Development and Characterization of Nanovesicles Containing Phenolic Compounds of Microalgae Spirulina Strain LEB-18 and Chlorella pyrenoidosa

DOI: 10.4236/ampc.2014.41002   PDF   HTML     5,193 Downloads   7,672 Views   Citations


The objective of this study was to elaborate liposomes, through the lipid film hydration methodology, to nanoencapsulate phenolic compounds of Spirulina LEB-18 and Chlorella pyrenoidosa microalgae, and evaluate their physicochemical characteristics and storage stability for 21 days. The total phenolic compounds were evaluated using a calibration curve of gallic acid using methanol and ethanol as extraction solvents. The size and polydispersity index of nanovesicles were determined by light scattering and the percentage encapsulation efficiency was determined by a centrifugation process. The stability of the liposomes at storage time was measured by zeta potential for 21 days. The methanol extracts from Spirulina had a higher content of phenolic compounds (2.62 mg gallic acid·g-1 of microalgae) compared to the extracts of Chlorella. However, liposomes with ethanolic extracts of the two algae showed higher encapsulation efficiency. The value was higher (96.40%) for Chlorella. All samples obtained nanometric size, with the highest value obtained for the liposome containing ethanol extract of Chlorella (239 nm) differing significantly (p 0.05) from the others. The liposomes containing extracts of Spirulina were more stable during the 21 days of storage, whereas, those consisting of ethanol extract showed no significant difference (p 0.05) throughout this period.

Share and Cite:

L. de Assis, A. Machado, A. de Souza da Motta, J. Costa and L. de Souza-Soares, "Development and Characterization of Nanovesicles Containing Phenolic Compounds of Microalgae Spirulina Strain LEB-18 and Chlorella pyrenoidosa," Advances in Materials Physics and Chemistry, Vol. 4 No. 1, 2014, pp. 6-12. doi: 10.4236/ampc.2014.41002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Goyal, K. Goyal, S. G. V. Kumar, A. Singh, O. P. Katare and D. N. Mishra, “Liposomal Drug Delivery Systems E Clinical Applications,” Actapharmaceutica, Vol. 55, No. 1, 2005, pp. 1-25.
[2] A. Jesorka and O. Orwar, “Liposomes: Technologies and Analytical Applications,” AnnualReview of Analytical Chemistry, Vol. 1, 2008, pp. 801-832.
[3] A. K. Thompson, J. P. Hindmarsh, D. Haisman, T. Rades and H. Singh. “Comparison of the Structure and Properties of Liposomes Prepared from Milk Fat Globule Membrane and Soy Phospholipids,” Journal of Agriculture and Food Chemistry, Vol. 54, No. 10, 2006, pp. 3704-3711.
[4] M. R. Mozafari, C. Johnson, S. Hatziantoniou and C. Demetzos, “Nanoliposomes and their applications in food nanotechnology,” Journal of liposome research, Vol. 18, No. 4, 2008, pp. 309-327.
[5] M. R. Mozafari, “Liposomes: An Overview of Manufacturing Techniques,” Cellular & Molecular Biology Letters, Vol. 10, No. 4, 2005, pp. 711-719.
[6] J. F. Nagle and S. Tristram-Nagle, “Structure of Lipid Bilayers,” Biochimica et Biophysica Acta, Vol. 1469, No. 3, 2000, pp. 159-195.
[7] M. Fathi, M. R. Mozafari and M. Mohebbi, “Nanoencapsulation of Food Ingredients Using Lipid Based Delivery Systems,” Trends in Food Science & Technology, Vol. 23, No. 1, 2012, pp. 13-27.
[8] C. C. Liolios, O. Gortzi,S. Lalas, J. Tsaknis and I. Chinou, “Liposomal Incorporation of Carvacrol and Thymol Isolated from The Essential Oil of Origanumdictamnus L. and in Vitro Antimicrobial Activity,” Food Chemistry, Vol. 112, No. 1, 2009, pp. 77-83.
[9] P. S. Malheiros, Y. M. S. Micheletto, N. P. Silveira and A. Brandelli, “Development and Characterization of Phosphatidylcholinenanovesicles Containing the Antimicrobial Peptide Nisin,” Food Research International, Vol. 43, No. 4, 2010, pp. 1198-1203.
[10] C. H. Peng, C. H. Chang, R. Y. Peng and C. C. Chyau, “Improved Membrane Transport of Astaxanthine by Liposomal Encapsulation,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 75, No. 2, 2010, pp. 154-61.
[11] V. Sant’anna, P. S. Malheiros and A. Brandelli, “Liposome Encapsulation Protects Bacteriocin-Like Substance P34 against Inhibition by Maillard Reaction Products,” Food Research International, Vol. 44, No. 1, 2011, pp. 326-330.
[12] M. Marsanasco, A. L. Márquez, J. R. Wagner, S. V. Alonso and N. S. Chiaramoni, “Liposome as Vehicles for Vitamins E and C: An Alternative to Fortify Orange Juice and Offer Vitamin C Protection after Heat Treatment,” Food Research International, Vol. 44, No. 9, 2011, pp. 3039-3046.
[13] L. Wechtersbach, N. P. U. lrih and B. Cigic, “Liposomal Stabilization of Ascorbic Acid in Model Systems and in Food Matrices,” LWT—Food Science and Technology, Vol. 45, No. 1, 2012, pp. 43-49.
[14] M. Plaza, S. Santoyo, L. Jaime, B. Avalo, A. Cifuentes, G. Reglero, G. G-B. Reina, F. J. Senoráns and E. Ibánez, “Comprehensive Characterization of the Functional Activities of Pressurized Liquid and Ultrasound-Assisted Extracts from Chlorella vulgaris,” LWT—Food Science and Technology, Vol. 46, No. 1, 2012, pp. 245-253.
[15] R. Pangestuti and S. K. Kim, “Biological Activities and Health Benefit Effects of Natural Pigments Derived from Marine Algae,” Journal of functional foods, Vol. 3, No. 4, 2011, pp. 255-266.
[16] H. B. Li, K. W. Cheng, C. C. Wong, K. W. Fan, F. Chen and Y. Jiang, “Evaluation of Antioxidant Capacity and Total Phenolic Content of Different Fractions of Selected Microalgae,” Food Chemistry, Vol. 102, No. 3, 2007, pp. 771-776.
[17] M. Plaza, A. Cifuentes and E. Ibánez, “In the Search of New Functional Food Ingredients from Algae,” Trends in Food Science & Technology, Vol. 19, No. 1, 2008, pp. 31-39.
[18] M. S. Mirand, R. G. Cintra, S. B. Barros and J. ManciniFilho, “Antioxidant Activity of the Microalga Spirulina maxima,” Brazilian Journal of Medical and Biological Research, Vol. 31, No. 8, 1998, pp. 1075-1079.
[19] M. G. Morais, E. M. Radmann, M. R. Andrade, G. G, Teixeira, L. R. F. Brusch and J. A. V. Costa, “Pilot Scale Semicontinuous Production of Spirulina Biomass in Southern Brazil,” Aquaculture, Vol. 294, No. 1-2, 2009, pp. 60-64.
[20] L. M. Colla, E. B. Furlong and J. A. V. Costa, “Antioxidant Properties of Spirulina (Arthospira) platensis Cultivated under Different Temperatures and Nitrogen Regimes,” Brazilian Archives of Biology and Technology, Vol. 50, No. 1, 2007, pp. 161-167.
[21] Z. Fang and B. Bhand ari, “Encapsulation of Polyphenols—A Review,” Trends in Food Science & Technology, Vol. 21, No. 10, 2010, pp. 510-523.
[22] J. A. V. Costa, L. M. Colla, P. D. Filho, K. Kabke and A. Weber, “Modelling of Spirulinaplatensis Growth in Fresh Water Using Response Surface Methodology,” World Journal of Microbiology and Biotechnology, Vol. 18, No. 7, 2002, pp. 603-607.
[23] M. M. Souza, L. Prietto, A. C. Ribeiro, T. D. Souza and E. Badiale-Furlong, “Assessment of the Antifungal Activity of spirulina platensis Phenolic Extract against aspergillus flavus,” Ciência e Agrotecnologia, Vol. 35, No. 6, 2011, pp. 1050-1058.
[24] M. M. Souza, V. M. Recart, M. Rocha, E. P. Cipolatti and E. Badiale-Furlong, “Study on the Extracting Conditions of Phenolic Compounds from Onion (Allium cepa L.),” Revista do Instituto Adolfo Lutz, Vol. 68, No. 2, 2009, pp. 192-200.
[25] M. L. Teixeira, J. Santos, N. P. Silveira and A. Brandelli, “Phospholipid Nanovesicles Containing a Bacteriocin-Like Substance for Control of Listeria monocytogenes,” Innovative Food Science and Emerging Technologies, Vol. 9, No. 1, 2008, pp. 49-53.
[26] S. E. Soares, “ácidos Fenólicos Como Antioxidantes,” Revista da Nutricao, Vol. 15, No. 1, 2002, pp. 71-81.
[27] E. A. Shalaby, S. M. M. Shanab and V. Singh, “Salt Stress Enhancement of Antioxidant and Antiviral Efficiency of Spirulina platensis,” Journal of Medicinal Plants Research, Vol. 4, No. 24, 2010, pp. 2622-2632.
[28] N. Siriwardhana, K. W. Lee, S. H. Kim, J. W. Ha and Y. J. Jeon, “Antioxidant Activity of Hizikia fusiformis on Reactive Oxygen Species Scavenging and Lipid Peroxidation Inhibition,” Food Science and Technology International, Vol. 9, No. 6, 2003, pp. 339-346.
[29] L. Cepoi, L. Rudi, V. Miscu, A. Cojocari, T. Chiriac and D. Sadovnic, “Antioxidative Activity of Ethanol Extracts from Spirulina platensis and Nostoc Linckia Measured by Various Methods,” Fascicula Biologie, Vol. 16, No. 2, 2009, pp. 43-48.
[30] K. Manivannan, P. Anantharaman and T. Balasubramanian, “Evaluation of Antioxidant Properties of Marine Microalgae chlorella marina (Butcher, 1952),” Asian Pacific Journal of Tropical Biomedicine, Vol. 2, No. 1, 2012, pp. 342-346.
[31] A. Wojdylo, J. Oszmianski and R. Czemerys, “Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs,” Food Chemistry, Vol. 105, No. 3, 2007, pp. 940-949.
[32] D. Nemen and E. Lemos-Senna, “Preparacao e Caracterizacao de Suspensoes Coloidais de Nanocarreadores Lipídicos Contendo Resveratrol Destinados à Administracao Cutanea,” Química Nova, Vol. 34, No. 3, 2011, pp. 408-413.
[33] M. Takahashi, S. Uechi, K. Takara, Y. Asikin and K. Wada, “Evaluation of an Oral Carrier System in Rats: Bioavailability and Antioxidant Properties of LiposomeCapsulated Curcumin,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 19, 2009, pp. 9141-9146.
[34] A. Priprem, J. Watanatorn, S. Sutthiparinyanont, W. Phachonpai, S. Muchimapura, “Anxiety and Cognitive Effects of Quercetin Liposomes in Rats,” Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 4, No. 1, 2008, pp. 70-78.
[35] R. B. Pegg and F. Shahidi, “Encapsulation, Stabilization, and Controlled Release of Food Ingredients and Bioactives,” 2nd Edition, Hand Book of Food Preservation, CRC Press, Boca Raton, 2007.
[36] S. E. Acosta, “Regulatory Aspects of Nutrient Delivery. Part IV: Regulatory Issues and Future Trends,” University of Toronto, Toronto, 2008.
[37] H. Ferreira, M. Lúcio, C. Siquet and S. Reis, “Utilizacao de Modelos Membranares na Avaliacao da Actividade de Fármacos,” Boletim da Sociedade Portuguesa de Química, No. 99, 2005, pp. 39-51.
[38] S. R. Schaffazick, S. S. Guterres, L. L. Freitas and A. R. Pohlmann, “Caracterizacao e Estabilidade Físico-Química de Sistemas poliméricos Nanoparticulados Para Administracao de Fármacos,” Química Nova, Vol. 26, No. 5, 2003, pp. 726-737.
[39] D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, D. Papahadjopoulos, “Optimizing Liposomes for Delivery of Chemotherapeutic Agents to Solid Tumors,” Pharmacological reviews, Vol. 51, No. 4, 1999, pp. 691-744.
[40] B. Ruozi, G. Tosi, F. Forni, M. Fresta and M. A. Vandelli, “Atomic Force Microscopy and Photon Correlation Spectroscopy: Two Techniques for Rapid Characterization of Liposomes,” European Journal of Pharmaceutical Sciences, Vol. 25, No. 1, 2005, pp. 81-89.
[41] C. Caddeo, K. Teskac, C. Sinico and J. Kristl, “Effect of Resveratrol Incorporated in Liposomes on Proliferation and UV-B Protection of Cells,” International Journal of Pharmaceutics, Vol. 363, No. 1-2, 2008, pp. 183-191.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.