Amazonian Fruits: An Overview of Nutrients, Calories and Use in Metabolic Disorders

Abstract

Amazonian fruits are outstanding in quality. They are consumed as true delicacies of nature by the Brazilian population. Besides their attractive attributes, i.e. appearance, different textures and distinctive flavors, their nutritional value is diversified in the type of calories and the functional food ingredients. In addition to being very palatable, Amazonian fruits provide energy-rich macronutrients (lipids, proteins and carbohydrates), micronutrients (minerals, water-soluble vitamins and fat-soluble vitamins), prebiotics (dietary fibers, especially pectin), bioactive substances (carotenoids and polyphenols), variety in the diet and improvement in the organoleptic properties and digestibility of (mixed) foods. This study first aimed to review concepts applicable to nutritional constituents and caloric contents of Amazonian fruits. It also attempted to clarify the potential use of these fruits in metabolic disorders (i.e. diabetes mellitus and/or obesity). To fulfill these purposes, 12 fruits were chosen for their dietetic significance in the Brazilian Amazonia.

Share and Cite:

de Andrade Jr., M.C. and Andrade, J.S.(2014) Amazonian Fruits: An Overview of Nutrients, Calories and Use in Metabolic Disorders. Food and Nutrition Sciences, 5, 1692-1703. doi: 10.4236/fns.2014.517182.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pereira, P.M. and Vicente, A.F. (2013) Meat Nutritional Composition and Nutritive Role in the Human Diet. Meat Science, 9, 586-592.
http://dx.doi.org/10.1016/j.meatsci.2012.09.018
[2] Janick, J. (2005) The Origins of Fruits, Fruit Growing, and Fruit Breeding. Plant Breeding Reviews, 25, 255-321.
http://dx.doi.org/10.1002/9780470650301
[3] Bozhkov, P.V. and Lam, E. (2011) Green Death: Revealing Programmed Cell Death in Plants. Cell Death and Differentiation, 18, 1239-1240.
http://dx.doi.org/10.1038/cdd.2011.86
[4] Brand-Miller, J.C., Griffin, H.J. and Colagiuri, S. (2012) The Carnivore Connection Hypothesis: Revisited. Journal of Obesity, 2012, 6 p.
http://dx.doi.org/10.1155/2012/258624
[5] Clement, C.R., De Cristo-Araújo, M., Coppens D’Eeckenbrugge, G., Alves Pereira, A. and PicanÇo-Rodrigues, D. (2010) Origin and Domestication of Native Amazonian Crops. Diversity, 2, 72-106.
http://dx.doi.org/10.3390/d2010072
[6] Clement, C.R. (1999) 1492 and the Loss of Amazonian Crop Genetic Resources. I. The Relation between Domestication and Human Population Decline. Economic Botany, 53, 188-202.
http://dx.doi.org/10.1007/BF02866498
[7] Paliyath, G., Tiwari, K., Sitbon, C. and Whitaker, B.D. (2012) Biochemistry of Fruits. In: Simpson, B.K., Nollet, L.M.L., Toldrá, F., Benjakul, S., Paliyath, G. and Hui, Y.H., Eds., Food Biochemistry and Food Processing, 2nd Edition, John Wiley & Sons, Inc., Hoboken, 531-553.
http://dx.doi.org/10.1002/9781118308035
[8] Ristow, M. and Zarse, K. (2010) How Increased Oxidative Stress Promotes Longevity and Metabolic Health: The Concept of Mitochondrial Hormesis (Mitohormesis). Experimental Gerontology, 45, 410-418.
http://dx.doi.org/10.1016/j.exger.2010.03.014
[9] Moldoveanu, S.C. (2012) Profiling of Lipids from Fruit and Seed Extracts. In: Chen, S., Ed., Lipidomics: Sea Food, Marine Based Dietary Supplement, Fruit and Seed, Transworld Research Network, Kerala, 73-123.
[10] Abu-Goukh, A.B.A., Shattir, A.E.T. and Mahdi, E.F.M. (2010) Physico-Chemical Changes during Growth and Development of Papaya Fruit. IΙ: Chemical Changes. Agriculture and Biology Journal of North America, 1, 871-877.
[11] Lima, D.M., Fernandes, P., Sampaio Nascimento, D., Figueiredo Ribeiro, R. De C.L. and De Assis, S.A. (2011) Fructose Syrup: A Biotechnology Asset. Food Technology & Biotechnology, 49, 424-434.
[12] Ishibashi, Y., Kohyama-Koganeya, A. and Hirabayashi, Y. (2013) New Insights on Glucosylated Lipids: Metabolism and Functions. Biochimica et Biophysica Acta, 1831, 1475-1485.
http://dx.doi.org/10.1016/j.bbalip.2013.06.001
[13] Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N. and Yagi, K. (1994) Cloning and Chromosomal Mapping of the Human Nonfunctional Gene for L-Gulono-Gamma-Lactone Oxidase, the Enzyme for L-Ascorbic Acid Biosynthesis Missing in Man. The Journal of Biological Chemistry, 269, 13685-13688.
[14] Butensky, E., Harmatz, P. and Lubin, B. (2008) Nutritional Anemias. In: Duggan, C., Watkins, J.B. and Walker, W.A., Eds., Nutrition in Pediatrics: Basic Science, Clinical Applications, PMPH-USA, Hamilton, 701-711.
[15] Morgan, S.L. and Weinsier, R.L. (1998) Fundamentals of Clinical Nutrition. 2nd Edition, Mosby, St. Louis, 271 p.
[16] Das, A., Raychaudhuri, U. and Chakraborty, R. (2012) Cereal Based Functional Food of Indian Subcontinent: A Review. Journal of Food Science and Technology, 49, 665-672.
http://dx.doi.org/10.1007/s13197-011-0474-1
[17] Anderson, J.W., Baird, P., Davis Jr., R.H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V. and Williams, C.L. (2009) Health Benefits of Dietary Fiber. Nutrition Reviews, 67, 188-205.
http://dx.doi.org/10.1111/j.1753-4887.2009.00189.x
[18] Gibson, G.R. and Roberfroid, M.B. (1995) Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. Journal of Nutrition, 125, 1401-1412.
[19] Shukla, S., Shukla, A., Mehboob, S. and Guha, S. (2011) Meta-Analysis: The Effects of Gut Flora Modulation Using Prebiotics, Probiotics and Synbiotics on Minimal Hepatic Encephalopathy. Alimentary Pharmacology and Therapeutics, 33, 662-671.
http://dx.doi.org/10.1111/j.1365-2036.2010.04574.x
[20] Dandona, P., Ghanim, H., Chaudhuri, A., Dhindsa, S. and Kim, S.S. (2010) Macronutrient Intake Induces Oxidative and Inflammatory Stress: Potential Relevance to Atherosclerosis and Insulin Resistance. Experimental & Molecular Medicine, 42, 245-253.
http://dx.doi.org/10.3858/emm.2010.42.4.033
[21] Raman, M., Ambalam, P., Kondepudi, K.K., Pithva, S., Kothari, C., Patel, A.T., Purama, R.K., Dave, J.M. and Vyas, B.R.M. (2013) Potential of Probiotics, Prebiotics and Synbiotics for Management of Colorectal Cancer. Gut Microbes, 4, 181-192.
http://dx.doi.org/10.4161/gmic.23919
[22] Aura, A.M., Niemi, P., Mattila, I., Niemel?, K., Smeds, A., Tamminen, T., Faulds, C., Buchert, J. and Poutanen, K. (2013) Release of Small Phenolic Compounds from Brewer’s Spent Grain and Its Lignin Fractions by Human Intestinal Microbiota in Vitro. Journal of Agricultural and Food Chemistry, 61, 9744-9753.
http://dx.doi.org/10.1021/jf4024195
[23] Bao, H., Ren, H., Endo, H., Takagi, Y. and Hayashi, T. (2004) Effects of Heating and the Addition of Seasonings on the Anti-Mutagenic and Anti-Oxidative Activities of Polyphenols. Food Chemistry, 86, 517-524.
http://dx.doi.org/10.1016/j.foodchem.2003.09.004
[24] Rodrigues, E., Mariutti, L.R.B. and Mercadante, A.Z. (2013) Carotenoids and Phenolic Compounds from Solanum sessiliflorum, an Unexploited Amazonian Fruit, and Their Scavenging Capacities against Reactive Oxygen and Nitrogen Species. Journal of Agricultural and Food Chemistry, 61, 3022-3029.
http://dx.doi.org/10.1021/jf3054214
[25] Ramakrishna, A. and Ravishankar, G.A. (2011) Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signaling & Behavior, 6, 1720-1731.
http://dx.doi.org/10.4161/psb.6.11.17613
[26] Deborde, C. and Jacob, D. (2014) MeRy-B, a Metabolomic Database and Knowledge Base for Exploring Plant Primary Metabolism. In: Sriram, G., Ed., Plant Metabolism: Methods and Protocols, Methods in Molecular Biology, Springer Science + Business Media, New York, 3-16.
http://dx.doi.org/10.1007/978-1-62703-661-0_1
[27] Cazzonelli, C.I. (2011) Carotenoids in Nature: Insights from Plants and Beyond. Functional Plant Biology, 38, 833-847.
http://dx.doi.org/10.1071/FP11192
[28] Ghasemzadeh, A. and Jaafar, H.Z.E. (2011) Effect of CO2 Enrichment on Synthesis of Some Primary and Secondary Metabolites in Ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101-1114.
http://dx.doi.org/10.3390/ijms12021101
[29] Naresh, P., Reddy, K.M., Reddy, M.K. and Ravishankar, K.V. (2012) Variability in Capsaicinoids Content and Phylogenetic Analysis of AT3, an Acyltransferase Gene in Chilli (Capsicum annuum L.). Vegetable Science, 39, 16-20.
[30] Levey, D.J., Tewksbury, J.J., Izhaki, I., Tsahar, E. and Haak, D.C. (2007) Evolutionary Ecology of Secondary Compounds in Ripe Fruit: Case Studies with Capsaicin and Emodin. In: Dennis, A.J., Schupp, E.W., Green, R.J. and Westcott, D.A., Eds., Seed Dispersal: Theory and Its Application in a Changing World, CAB International, Oxfordshire, 37-58.
http://dx.doi.org/10.1079/9781845931650.0037
[31] Andrade Jr., M.C. and Andrade, J.S. (2012) Physicochemical Changes in Cubiu Fruits (Solanum sessiliflorum Dunal) at Different Ripening Stages. Food Science and Technology, 32, 250-254.
http://dx.doi.org/10.1590/S0101-20612012005000049
[32] Lemmens, F. (2011) Sports Nutrition in Children and Adolescents: Scientific Base and Practical Aspects. Journal du Pédiatre Belge, 13, 42-46.
[33] Bresson, J.L. and Goudable, J. (2013) Child Hydration and Dipsic Behavior (Hydratation de l’Enfant et Comportement Dipsique). Cahiers de Nutrition et de Diététique, 48, 41-52.
http://dx.doi.org/10.1016/j.cnd.2012.10.006
[34] Darmon, N., Briend, A. and Drewnowski, A. (2004) Energy-Dense Diets Are Associated with Lower Diet Costs: A Community Study of French Adults. Public Health Nutrition, 7, 21-27.
http://dx.doi.org/10.1079/PHN2003512
[35] Drewnowski, A. and Darmon, N. (2005) The Economics of Obesity: Dietary Energy Density and Energy Cost. The American Journal of Clinical Nutrition, 82, 265S-273S.
[36] Newmark, H.L. (1987) Nutrient Density: An Important and Useful Tool for Laboratory Animal Studies. Carcinogenesis, 8, 871-873.
http://dx.doi.org/10.1093/carcin/8.7.871
[37] Drewnowski, A. and Fulgoni III, V. (2008) Nutrient Profiling of Foods: Creating a Nutrient-Rich Food Index. Nutrition Reviews, 66, 23-39.
http://dx.doi.org/10.1111/j.1753-4887.2007.00003.x
[38] Izhaki, I. (1992) A Comparative Analysis of the Nutritional Quality of Mixed and Exclusive Fruit Diets for YellowVented Bulbuls. The Condor, 94, 912-923.
http://dx.doi.org/10.2307/1369288
[39] Izhaki, I. (1993) Influence of Nonprotein Nitrogen on Estimation of Protein from Total Nitrogen in Fleshy Fruits. Journal of Chemical Ecology, 19, 2605-2615.
http://dx.doi.org/10.1007/BF00980695
[40] Izhaki, I. (1998) Essential Amino Acid Composition of Fleshy Fruits versus Maintenance Requirements of Passerine Birds. Journal of Chemical Ecology, 24, 1333-1345.
http://dx.doi.org/10.1023/A:1021274716062
[41] Food and Agriculture Organization of the United Nations-FAO (2003) Food Energy—Methods of Analysis and Conversion Factors. FAO Food and Nutrition Paper, 77, 1-87.
[42] Chapmana, K.D., Dyerb, J.M. and Mullenc, R.T. (2013) Commentary: Why Don’t Plant Leaves Get Fat? Plant Science, 207, 128-134.
http://dx.doi.org/10.1016/j.plantsci.2013.03.003
[43] Wills, R.B.H., Lee, T.H., Graham, D., McGlasson, W.B. and Hall, E.G. (1982) Postharvest: An Introduction to the Physiology and Handling of Fruit and Vegetables. 2nd Edition, UNSW Press Ltd., New South Wales, 161 p.
[44] Souza, R.S., Andrade, J.S. and Costa, S.S. (2012) Effect of the Harvest Date on the Chemical Composition of Patauá (Oenocarpus bataua Mart.) Fruits from a Forest Reserve in the Brazilian Amazon. International Journal of Agronomy, 2012, Article ID: 524075.
http://dx.doi.org/10.1155/2012/524075
[45] Montenegro, G., Pereira, K.S. and Melo, L. (2014) The Brazilian Way to Consume AÇaí: Do Guaraná Extract and Sugar Concentrations Influence on Acceptance? Journal of Food Research, 3, 39-45.
http://dx.doi.org/doi:10.5539/jfr.v3n1p39
[46] NEPA-UNICAMP (2011) Brazilian Table of Composition of Foods (Tabela Brasileira de ComposiÇão de Alimentos). 4th Edition, NEPA-UNICAMP, Campinas, 161 p.
[47] Darnet, S.H., Da Silva, L.H.M., Rodrigues, A.M.C. and Lins, R.T. (2011) Nutritional Composition, Fatty Acid and Tocopherol Contents of Buriti (Mauritia flexuosa) and Patawa (Oenocarpus bataua) Fruit Pulp from the Amazon Region. Food Science and Technology, 31, 488-491.
http://dx.doi.org/10.1590/S0101-20612011000200032
[48] Rufino, M.S.M., Pérez-Jiménez, J., Arranz, S., Alves, R.E., De Brito, E.S., Oliveira, M.S.P. and Saura-Calixto, F. (2011) AÇaí (Euterpe oleraceae) “BRS Pará”: A Tropical Fruit Source of Antioxidant Dietary Fiber and High Antioxidant Capacity Oil. Food Research International, 44, 2100-2106.
http://dx.doi.org/doi:10.1016/j.foodres.2010.09.011
[49] Tonon, R.V., Brabet, C. and Hubinger, M.D. (2010) Anthocyanin Stability and Antioxidant Activity of Spray-Dried AÇai (Euterpe oleracea Mart.) Juice Produced with Different Carrier Agents. Food Research International, 43, 907-914.
http://dx.doi.org/doi:10.1016/j.foodres.2009.12.013
[50] Woodroof, J.G. (1994) Nuts as a Source of Edible Oil. In: Kamel, B.S. and Kakuda, Y., Eds., Technological Advances in Improved and Alternative Sources of Lipids, Springer US, New York, 150-176.
http://dx.doi.org/10.1007/978-1-4615-2109-9_6
[51] Baquião, A.C., Zorzete, P., Reis, T.A., AssunÇão, E., Vergueiro, S. and Correa, B. (2012) Mycoflora and Mycotoxins in Field Samples of Brazil Nuts. Food Control, 28, 224-229.
http://dx.doi.org/10.1016/j.foodcont.2012.05.004
[52] Rayman, M.P. (2012) Selenium and Human Health. The Lancet, 379, 1256-1268.
http://dx.doi.org/10.1016/S0140-6736(11)61452-9
[53] De Cristo-Araújo, M., Maciel dos Reis, V., PicanÇo Rodrigues, D. and Clement, C.R. (2013) Domestication of Peach Palm in Southwestern Amazonia. Tipití: Journal of the Society for the Anthropology of Lowland South America, 11, 74-80.
[54] Vargas-Isla, R., Yuyama, L.K.O, Aguiar, J.P.L. and Ishikawa, N.K. (2013) Production of Panus strigellus Spawn Using the Internal Sheath of Peach Palm (Bactris gasipaes) as a Substrate. Interciencia, 38, 733-736.
[55] Da Silva, J.B.F. and Clement, C.R. (2005) Wild Pejibaye (Bactris gasipaes Kunth var. chichagui) in Southeastern Amazonia. Acta Botanica Brasilica, 19, 281-284.
http://dx.doi.org/10.1590/S0102-33062005000200010
[56] Azizi, M.H., Andrade, J.S., Lemos, J.S., Souza, S.J., De Souza, R.S. and Hadian, Z. (2012) Quality of Wheat Bread Incorporated with Different Levels of Peach Palm Flour (Bactris gasipaes Kunth). Journal of Tropical Agriculture and Food Science, 40, 13-22.
[57] Leitchik, V.M. and Shelov, S.D. (2003) Some Basic Concepts of Terminology: Traditions and Innovations. Journal of the International Institute for Terminology Research, 14, 86-101.
[58] Bonnin, E. and Lahaye, M. (2013) Contribution of Cell Wall-Modifying Enzymes to the Texture of Fleshy Fruits. The Example of Apple. Journal of the Serbian Chemical Society, 78, 417-427.
http://dx.doi.org/10.2298/JSC121123004B
[59] Costa, F., Costa, G., Sansavini, S., Soglio, V., Gianfranceschi, L., Schouten, H.J., Alba, R. and Giovannoni, J. (2009). Heterologous Comparative Genomics to Identify Candidate Genes Impacting Fruit Quality in Apple (Malus x Domestica Borkh.). Acta Horticulturae, 814, 517-522.
[60] Akter, M.S., Oh, S., Eun, J.B. and Ahmed, M. (2011) Nutritional Compositions and Health Promoting Phytochemicals of Camu-Camu (Myrciaria dubia) Fruit: A Review. Food Research International, 44, 1728-1732.
http://dx.doi.org/10.1016/j.foodres.2011.03.045
[61] Revilla, J. (2001) Plants of the Amazonia: Economic and Sustainable Opportunities (Plantas da Amaz?nia: Oportunidades Econ?micas e Sustentáveis). 2nd Edition, Programa de Desenvolvimento Empresarial e Tecnológico, Manaus, 405 p.
[62] Pavan, R., Jain, S. and Kumar, A. (2012) Properties and Therapeutic Application of Bromelain: A Review. Biotechnology Research International, 2012, Article ID: 976203.
http://dx.doi.org/10.1155/2012/976203
[63] Finnegana, E., Mahajanb, P.V., O’Connella, M., Francisa, G.A. and O’Beirnea, D. (2013) Modelling Respiration in Fresh-Cut Pineapple and Prediction of Gas Permeability Needs for Optimal Modified Atmosphere Packaging. Postharvest Biology and Technology, 79, 47-53.
http://dx.doi.org/10.1016/j.postharvbio.2012.12.015
[64] Hornung-Leoni, C.T. (2011). Bromeliads: Traditional Plant Food in Latin America since Prehispanic Times. Polibotánica, 32, 219-229.
[65] Lim, T.K. (2012) Myrciaria dubia. In: Lim, T.K., Ed., Edible Medicinal and Non-Medicinal Plants, Springer Netherlands, Dordrecht, 631-638.
http://dx.doi.org/10.1007/978-94-007-2534-8_86
[66] Andrade, J.S., Coelho, E.G., Oliveira, A.P. and Silva Filho, D.F. (2010) Postharvest Conservation of Cubiu (Solanum sessiliflorum Dunal) Fruits in Response to Passive Modified Atmosphere Associated with Refrigeration. Acta Horticulturae, 864, 439-444.
[67] Kandel, E.R., Schwartz, J.H. and Jessel, T.M. (2000) Principles of Neural Science. 4th Edition, McGraw-Hill, New York, 1414 p.
[68] Law, S.V., Abu Bakar, F., Mat Hashim, D. and Abdul Hamid, A. (2011) Popular Fermented Foods and Beverages in Southeast Asia. International Food Research Journal, 18, 474-483.
[69] Potter, N.N. and Hotchkiss, J.H. (1998) Food Science. 5th Edition, Aspen, Maryland, 608 p.
[70] Schwartz, M.W., Woods, S.C., Porte Jr., D., Seeley, R.J. and Baskin, D.G. (2000) Central Nervous System Control of Food Intake. Nature, 404, 661-671.
[71] Blundell, J.E. and Tremblay, A. (1995) Appetite Control and Energy (Fuel) Balance. Nutrition Research Reviews, 8, 225-242.
http://dx.doi.org/10.1079/NRR19950014
[72] Scheurink, A.J.W., Ammar, A.A., Benthem, B., Van Dijk, G. and S?dersten, P.A.T. (1999) Exercise and the Regulation of Energy Intake. International Journal of Obesity, 23, S1-S6.
http://dx.doi.org/10.1038/sj.ijo.0800876
[73] Casta?eda, T.R., Jürgens, H., Wiedmer, P., Pfluger, P., Diano, S., Horvath, T.L., Tang-Christensen, M. and Tscho, M.H. (2005) Obesity and the Neuroendocrine Control of Energy Homeostasis: The Role of Spontaneous Locomotor Activity. The Journal of Nutrition, 135, 1314-1319.
[74] Hawkins, A. and Olszewski, J. (1957) Glia/Nerve Cell Index for Cortex of the Whale. Science, 126, 76-77.
http://dx.doi.org/10.1126/science.126.3263.76
[75] Andrade Jr., M.C. (2002) Evolutionary Aspects of Hormones (Aspectos Evolutivos dos Horm?nios). Arquivos Brasileiros de Endocrinologia & Metabologia, 46, 291-298.
http://dx.doi.org/10.1590/S0004-27302002000300013
[76] Levin, B.E. and Strack, A.M. (2008) Diet-Induced Obesity in Animal Models and What They Tell Us about Human Obesity. In: Harvey, J. and Withers, D.J., Eds., Neurobiology of Obesity, Cambridge University Press, Cambridge, 164-195.
http://dx.doi.org/10.1017/CBO9780511541643.007
[77] Astrup, A. and Finer, N. (2000) Redefining Type 2 Diabetes: “Diabesity” or “Obesity Dependent Diabetes Mellitus”? Obesity Reviews, 1, 57-59.
http://dx.doi.org/10.1046/j.1467-789x.2000.00013.x
[78] Zimmet, P., Albert, K.G.M.M. and Shaw, J. (2001) Global and Societal Implications of the Diabetes Epidemic. Nature, 414, 782-787.
http://dx.doi.org/10.1038/414782a
[79] Misra, A. and Khurana, L. (2008) Obesity and the Metabolic Syndrome in Developing Countries. The Journal of Clinical Endocrinology & Metabolism, 93, S9-S30.
http://dx.doi.org/10.1210/jc.2008-1595
[80] Esparza-Romero, J., Valencia, M.E., Martinez, M.E., Ravussin, E., Schulz, L.O. and Bennett, P.H. (2010) Differences in Insulin Resistance in Mexican and US Pima Indians with Normal Glucose Tolerance. The Journal of Clinical Endocrinology and Metabolism, 95, E358-E362.
http://dx.doi.org/10.1210/jc.2010-0297
[81] Wing, R.R., Goldstein, M.G., Acton, K.J., Birch, L.L., Jakicic, J.M., Sallis Jr., J.F., Smith-West, D., Jeffery, R.W. and Surwit, R.S. (2001) Lifestyle Changes Related to Obesity, Eating Behavior, and Physical Activity. Diabetes Care, 24, 117-123.
http://dx.doi.org/10.2337/diacare.24.1.117
[82] Booth, F.W., Chakravarthy, M.V. and Spangenburg, E.E. (2002) Exercise and Gene Expression: Physiological Regulation of the Human Genome through Physical Activity. Journal of Physiology, 543, 399-411.
http://dx.doi.org/10.1113/jphysiol.2002.019265
[83] Lindgärdea, F., Widénb, I., Gebbb, M. and Ahrénc, B. (2004) Traditional versus Agricultural Lifestyle among Shuar Women of the Ecuadorian Amazon: Effects on Leptin Levels. Metabolism: Clinical and Experimental, 53, 1355-1358.
http://dx.doi.org/10.1016/j.metabol.2004.04.012
[84] Mussali-Galante, P., Tovar-Sánchez, E., Valverde, M. and Rojas, E. (2014) Genetic Structure and Diversity of Animal Populations Exposed to Metal Pollution. Reviews of Environmental Contamination and Toxicology, 227, 79-106.
http://dx.doi.org/10.1007/978-3-319-01327-5_3
[85] Hall, J.A., Dominy, J.E., Lee, Y. and Puigserver, P. (2013) The Sirtuin Family’s Role in Aging and Age-Associated Pathologies. The Journal of Clinical Investigation, 123, 973-979.
http://dx.doi.org/10.1172/JCI64094
[86] Kitada, M. and Koya, D. (2013) SIRT1 in Type 2 Diabetes: Mechanisms and Therapeutic Potential. Diabetes & Metabolism Journal, 37, 315-325.
http://dx.doi.org/10.4093/dmj.2013.37.5.315
[87] Martins, I.J. (2013) Increased Risk for Obesity and Diabetes with Neurodegeneration in Developing Countries. Journal of Molecular and Genetic Medicine, S1, 001.
http://dx.doi.org/10.4172/1747-0862.S1-001
[88] Heuer, H. and Smalla, K. (2012) Plasmids Foster Diversification and Adaptation of Bacterial Populations in Soil. FEMS Microbiology Reviews, 36, 1083-1104.
http://dx.doi.org/10.1111/j.1574-6976.2012.00337.x
[89] Purushotham, A., Xu, Q. and Li, X. (2012) Systemic SIRT1 Insufficiency Results in Disruption of Energy Homeostasis and Steroid Hormone Metabolism upon High-Fat-Diet Feeding. The FASEB Journal, 26, 656-667.
http://dx.doi.org/10.1096/fj.11-195172
[90] Dorts, J., Kestemont, P., Marchand, P.A., D’Hollander, W., Thézenas, M.L., Raes, M. and Silvestre, F. (2011) Ecotoxicoproteomics in Gills of the Sentinel Fish Species, Cottus gobio, Exposed to Perfluorooctane Sulfonate (PFOS). Aquatic Toxicology, 103, 1-8.
http://dx.doi.org/10.1016/j.aquatox.2011.01.015
[91] Sen, S. and Simmons, R.A. (2010) Maternal Antioxidant Supplementation Prevents Adiposity in the Offspring of Western Diet-Fed Rats. Diabetes, 59, 3058-3065.
http://dx.doi.org/10.2337/db10-0301
[92] Streletskaya, N.A., Rusmevichientong, P., Amatyakul, W. and Kaiser, H.M. (2014) Taxes, Subsidies, and Advertising Efficacy in Changing Eating Behavior: An Experimental Study. Applied Economic Perspectives and Policy, 36, 146-174.
http://dx.doi.org/10.1093/aepp/ppt032
[93] Quesada, S., Azofeifa, G., Jatunov, S., Jiménez, G., Navarro, L. and Gómez, G. (2011) Carotenoids Composition, Antioxidant Activity and Glycemic Index of Two Varieties of Bactris gasipaes. Emirates Journal of Food and Agriculture, 23, 482-489.
[94] Anil, K.M. and Singh, N.N. (2011) Diabetes: A Pragmatic Therapy with a Goal to Prevent End Stage Kidney Disease and Dialysis. Open Journal of Internal Medicine, 1, 80-92.
http://dx.doi.org/10.4236/ojim.2011.13017
[95] López, A. and Seligman, H.K. (2012) Clinical Management of Food-Insecure Individuals with Diabetes. Diabetes Spectrum, 25, 14-18.
http://dx.doi.org/10.2337/diaspect.25.1.14
[96] Vuholm, S., Jakobsen, L.M.A., S?rensen, K.V., Kehlet, U., Raben, A. and Kristensen, M. (2014) Appetite and Food Intake after Consumption of Sausages with 10% Fat and Added Wheat or Rye Bran. Appetite, 73, 205-211.
http://dx.doi.org/10.1016/j.appet.2013.09.028
[97] Argote, F.E., Vargas, D.P. and Villada, H.S. (2013) Market Research on the Degree of Acceptance of Cocona Jam in Sibundoy, Putumayo (Investigación de Mercado sobre el Grado de Aceptación de Mermelada de Cocona en Sibundoy, Putumayo). Revista Guillermo de Ockham, 11, 197-206.
[98] Pardo, M.A. (2004) Solanum sessiliflorum Dunal Effect on Lipid and Glucose Metabolism (Efecto de Solanum sessiliflorum Dunal sobre el Metabolismo Lipídico y de la Glucosa). Ciencia e Investigación, 7, 43-48.
[99] Lim, S.H., Kim, M.Y. and Lee, J. (2014) Apple Pectin, a Dietary Fiber, Ameliorates Myocardial Injury by Inhibiting Apoptosis in a Rat Model of Ischemia/Reperfusion. Nutrition Research and Practice, 8, e12.
[100] Sánchez, D., Muguerza, B., Moulay, L., Hernández, R., Miguel, M. and Aleixandre, A. (2008) Highly Methoxylated Pectin Improves Insulin Resistance and Other Cardiometabolic Risk Factors in Zucker Fatty Rats. Journal of Agricultural and Food Chemistry, 56, 3574-3581.
http://dx.doi.org/10.1021/jf703598j
[101] Gardner, D.F., Schwartz, L., Krista, M. and Merimee, T.J. (1984) Dietary Pectin and Glycemic Control in Diabetes. Diabetes Care, 7, 1935-5548.
http://dx.doi.org/10.2337/diacare.7.2.143
[102] Brazilian Ministry of Agriculture, Livestock and Food Supply (2010) Manual of Unconventional Crops (Manual de HortaliÇas Não-Convencionais). Mapa/ACS, Brasília, 92 p.
[103] Belitz, H.D., Grosch, W. and Schieberle, P. (2009) Food Chemistry. 4th Edition, Springer-Verlag, Berlin, 1070 p.
[104] Clement, C.R., Weber, J.C., Van Leeuwen, J., Domian, C.A., Cole, D.M., Lopez, L.A.A. and Argüello, H. (2004) Why Extensive Research and Development Did Not Promote Use of Peach Palm Fruit in Latin America. Agroforestry Systems, 61, 195-206.
http://dx.doi.org/10.1023/B:AGFO.0000028999.84655.17
[105] Jäger, M. and Padulosi, S. (2012) Reflections on Market-Based Strategies for Enhancing the Use of Agrobiodiversity. In: Padulosi, S., Bergamini, N. and Lawrence, T., Eds., On Farm Conservation of Neglected and Underutilized Species: Status, Trends and Novel Approaches to Cope with Climate Change. Proceedings of an International Conference, Frankfurt, 14-16 June 2011, 241-248.
[106] Farreé, M., Picò, Y. and Barcelò, D. (2013) Direct Peel Monitoring of Xenobiotics in Fruit by Direct Analysis in Real Time Coupled to a Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer. Analytical Chemistry, 85, 2638-2644.
http://dx.doi.org/10.1021/ac3026702
[107] Wen, H., Yang, H., An, Y.J., Kim, J.M., Lee, D.H., Jin, X., Park, S., Min, K.J. and Park, S. (2013) Enhanced Phase II Detoxification Contributes to Beneficial Effects of Dietary Restriction as Revealed by Multi-Platform Metabolomics Studies. Molecular & Cellular Proteomics, 12, 575-586.
http://dx.doi.org/10.1074/mcp.M112.021352
[108] Shetty, K., Clydesdale, F.M. and Vattem, D.A. (2006) Clonal Screening and Sprout Based Bioprocessing of Phenolic Phytochemicals for Functional Foods. In: Shetty, K., Paliyath, G., Pometto, A. and Levin, R.E., Eds., Food Biotechnology, CRC Press, Boca Raton, 1-23.
http://dx.doi.org/10.1201/9781420027976.ch2.02
[109] Linnewiel, K., Ernst, H., Caris-Veyrat, C., Ben-Dor, A., Kampf, A., Salman, H., Danilenko, M., Levy, J. and Sharoni, Y. (2009) Structure Activity Relationship of Carotenoid Derivatives in Activation of the Electrophile/Antioxidant Response Element Transcription System. Free Radical Biology & Medicine, 47, 659-667.
http://dx.doi.org/10.1016/j.freeradbiomed.2009.06.008
[110] Omaye, S.T. (2004) Food and Nutritional Toxicology. CRC Press, Boca Raton.
http://dx.doi.org/10.1201/9780203485309.fmatt
[111] Lynch, A.M., Sasaki, J.C., Elespuru, R., Jacobson-Kram, D., Thybaud, V., Boeck, M.D., Aardema, M.J., Aubrecht, J., Benz, R.D., Dertinger, S.D., Douglas, G.R., White, P.A., Escobar, P.A., Fornace Jr., A., Honma, M., Naven, R.T., Schiestl, R.H., Walmsley, R.M., Yamamura, E., Benthem, J. and Kim, J.H. (2011) New and Emerging Technologies for Genetic Toxicity Testing. Environmental and Molecular Mutagenesis, 52, 205-223.
http://dx.doi.org/10.1002/em.20614
[112] Ribeiro, J.C. (2010) Evaluation of the Mutagenic and Antimutagenic Potential of AÇaí Pulp (Euterpe oleracea Mart.) and Buriti Oil (Mauritia flexuosa) in Vivo (AvaliaÇão do Potencial Mutagênico e Antimutagênico da Polpa de AÇaí (Euterpe oleracea Mart.) e do óleo de Buriti (Mauritia flexuosa) in Vivo. Thesis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto.
[113] Hernandes, L.C. (2013) Cytotoxicity, Genotoxicity and Antigenotoxicity Evaluations and Gene Expression of iNOS and COX-2 in Rats Treated with the Fruit Pulp of Solanum sessiliflorum Dunal (AvaliaÇão da Citotoxicidade, Genotoxicidade, Antigenotoxicidade e Expressão dos Genes iNOS e COX-2 em Ratos Tratados com a Polpa do Fruto de Solanum sessiliflorum Dunal). Thesis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto.
[114] Souza Filho, O.C., Sagrillo, M.R., Garcia, L.F.M., Machado, A.K., Cadoná, F., Ribeiro, E.E., Duarte, M.M.M.F., Morel, A.F. and Cruz, I.B.M. (2013) The in Vitro Genotoxic Effect of Tucuma (Astrocaryum aculeatum), an Amazonian Fruit Rich in Carotenoids. Journal of Medicinal Food, 16, 1013-1021.
http://dx.doi.org/10.1089/jmf.2012.0287

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.