c3B4P3JlZmVyZW5jZWlkPTg2MTQ5MScgdGFyZ2V0PSdfYmxhbmsnPjQ2PC9hPl0CNDYCNDa+AVguIENoZW5nLCBZLiBUYW8sIFkuIFIuIENoZW4gYW5kIFkuIEx1bywg4oCcTklSL01JUiBEdWFsLVNlbnNvciBNYWNoaW5lIFZpc2lvbiBTeXN0ZW0gZm9yIE9ubGluZSBBcHBsZSBTdGVtLUVuZC9DYWx5eCBSZWNvZ25pdGlvbizigJ0gVHJhbnNhY3Rpb25zIG9mIEFTQUUsIFZvbC4gNDYsIE5vLiAyLCAyMDAzLCBwcC4gNTUxLTU1OC5kAi4PZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE0OTInIHRhcmdldD0nX2JsYW5rJz40NzwvYT5dAjQ3AjQ38QFJLiBLYXZkaXIgYW5kIEQuIEUuIEd1eWVyLCDigJxDb21wYXJpc29uIG9mIEFydGlmaWNpYWwgTmV1cmFsIE5ldHdvcmtzIGFuZCBTdGF0aXN0aWNhbCBDbGFzc2lmaWVycyBpbiBBcHBsZSBTb3J0aW5nIFVzaW5nIFRleHR1cmFsIEZlYXR1cmVzLOKAnSBCaW9zeXN0ZW0gRW5naW5lZXJpbiwgTm8uIDg5LCBObywgMywgMjAwNCwgcHAuIDMzMS0zNDQuIA0KZG9pOjEwLjEwMTYvai5iaW9zeXN0ZW1zZW5nLjIwMDQuMDguMDA4ZAIvD2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNDkzJyB0YXJnZXQ9J19ibGFuayc+NDg8L2E+XQI0OAI0OIECUC4gTS4gTWVobCwgWS4gUi4gQ2hlbiwgTS4gUy4gS2ltIGFuZCBELiBFLiBDaGFuLCDigJxEZXZlbG9wbWVudCBvZiBIeXBlcnNwZWN0cmFsIEltYWdpbmcgVGVjaG5pcXVlIGZvciB0aGUgRGV0ZWN0aW9uIG9mIEFwcGxlIFN1cmZhY2UgRGVmZWN0cyBhbmQgQ29udGFtaW5hdGlvbnMs4oCdIEpvdXJuYWwgRm9vZCBFbmdpbmVlcmluZywgVm9sLiA2MSwgTm8uIDEsIDIwMDQsIHBwLiA2NzgxLiBkb2k6MTAuMTAxNi9TMDI2MC04Nzc0KDAzKTAwMTg4LTJkAjAPZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE0OTQnIHRhcmdldD0nX2JsYW5rJz40OTwvYT5dAjQ5AjQ5ygFULiBCcm9zbmFuIGFuZCBELiBXLiBTdW4sIOKAnEltcHJvdmluZyBRdWFsaXR5IEluc3BlY3Rpb24gb2YgRm9vZCBQcm9kdWN0cyBieSBDb21wdXRlciBWaXNpb27igJRBIFJldmlldyzigJ0gSm91cm5hbCBvZiBGb29kIEVuZ2luZWVyaW5nLCBWb2wuIDYxLCBOby4gMSwgMjAwNCwgcHAuIDMxNi4gZG9pOjEwLjEwMTYvUzAyNjAtODc3NCgwMykwMDE4My0zZAIxD2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNDk1JyB0YXJnZXQ9J19ibGFuayc+NTA8L2E+XQI1MAI1MJQCRi4gUGxhLCBKLiBTLiBTYW5jaGV6IGFuZCBKLiBNLiBTYW5jaGl6LCDigJxPbi1MaW5lIE1hY2hpbmUgVmlzaW9uIFN5c3RlbSBmb3IgRmFzdCBGcnVpdCBDb2xvdXIgU29ydGluZyBVc2luZyBMb3ctQ29zdCBBcmNoaXRlY3R1cmUs4oCdIEluOiBWSUlJIFNQSUUgQ29uZmVyZW5jZSBvbiBNYWNoaW5lIFZpc2lvbiBTeXN0ZW1zIGZvciBJbnNwZWN0aW9uIGFuZCBNZXRyb2xvZ3ksIEJvc3RvbiwgMjcgQXVndXN0IDE5OTksIHBwLiAyNzctMjg2Lg0KZG9pOjEwLjExMTcvMTIuMzYwMjc5ZAIyD2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNDk2JyB0YXJnZXQ9J19ibGFuayc+NTE8L2E+XQI1MQI1Mc8BRi4gTWVuZG96YSBhbmQgSi4gTS4gQWd1aWxlcmEsIOKAnEFwcGxpY2F0aW9uIG9mIEltYWdlIEFuYWx5c2lzIGZvciBDbGFzc2lmaWNhdGlvbiBvZiBSaXBlbmluZyBCYW5hbmFzLOKAnSBKb3VybmFsIG9mIEZvb2QgU2NpZW5jZSwgVm9sLiA2OSwgTm8uIDksIDIwMDQsIHBwLiA0NzEtNDc3LiANCmRvaToxMC4xMTExL2ouMTM2NS0yNjIxLjIwMDQudGIwOTkzMi54ZAIzD2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNDk3JyB0YXJnZXQ9J19ibGFuayc+NTI8L2E+XQI1MgI1MoECUi4gT2JlcnRpLCBSLiBHdWlkZXR0aSBhbmQgSS4gTWlnbmFuaSwg4oCcQW5hbGlzaSBtdWx0aXNwZXR0cmFsZSBkaSBJbW1hZ2luaSBwZXIgbOKAmUluZGl2aWR1YXppb25lIFByZWNvY2UgRGkgZGFubmkgTWVjY2FuaWNpIFN1IFByb2RvdHRpIG9ydG9mcnV0dGljb2xpOiBVbuKAmUFwcGxpY2F6aW9uZSBzdSBQZXJlIERlY2FuYSzigJ0gUml2aXN0YSBkaSBJbmdlZ25lcmlhIEFncmFyaWEsIFZvbC4gMzAsIE5vLiAzLCAyMDA0LCBwcC4gMTM3LTE0Ny5kAjQPZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE0OTgnIHRhcmdldD0nX2JsYW5rJz41MzwvYT5dAjUzAjUzwAFHLiBQZXJpLCBSLiBSb21hbmllbGxvLCBNLiBBbW9kaW8gYW5kIEcuIENvbGVsbGksIOKAnFRoZSBBcHBsaWNhdGlvbiBvZiBhIEZhc3QgQ29sb3VyIFF1YW50aXphdGlvbiBBbGdvcml0aG0gZm9yIFNvcnRpbmcgUGVhY2hlcyBmb3IgZmlybW5lc3Ms4oCdIEluOiBYWFggQ0lPU1RBQ0dJUiBWIENPTkZFUkVOQ0UsIFRvcmlubywgMjAwMy5kAjUPZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE0OTknIHRhcmdldD0nX2JsYW5rJz41NDwvYT5dAjU0AjU0tAJNLiBaLiBBYmR1bGxhaCwgSi4gTW9oYW1hZC1TYWxlaCwgQS4gUy4gRmF0aGludWwtU3lhaGlyIGFuZCBCLiBNLiBOLiBNb2hkLUF6ZW1pLCDigJxEaXNjcmltaW5hdGlvbiBhbmQgQ2xhc3NpZmljYXRpb24gb2YgRnJlc2gtQ3V0IFN0YXJmcnVpdHMgKEF2ZXJyaG9hIENhcmFtYm9sYSBMLikgVXNpbmcgQXV0b21hdGVkIE1hY2hpbmUgVmlzaW9uIFN5c3RlbSzigJ0gSm91cm5hbCBvZiBGb29kIEVuZ2luZWVyaW5nLCBWb2wuIDc2LCBOby4gNCwgMjAwNiwgcHAuIDUwNi01MjMuIA0KZG9pOjEwLjEwMTYvai5qZm9vZGVuZy4yMDA1LjA1LjA1M2QCNg9kFgJmDxUEWFs8YSBocmVmPScuLi9yZWZlcmVuY2UvcmVmZXJlbmNlc3BhcGVycy5hc3B4P3JlZmVyZW5jZWlkPTg2MTUwMCcgdGFyZ2V0PSdfYmxhbmsnPjU1PC9hPl0CNTUCNTXUAUEuIEIuIEtvYywg4oCcRGV0ZXJtaW5hdGlvbiBvZiBXYXRlcm1lbG9uIFZvbHVtZSBVc2luZyBFbGxpcHNvaWQgQXBwcm94aW1hdGlvbiBhbmQgSW1hZ2UgUHJvY2Vzc2luZyzigJ0gUG9zdGhhcnZlc3QgQmlvbG9neSBhbmQgVGVjaG5vbG9neSwgVm9sLiA0NSwgTm8uIDEsIDIwMDcsIHBwLiAzNjYtMzcxLiBkb2k6MTAuMTAxNi9qLnBvc3RoYXJ2YmlvLjIwMDcuMDMuMDEwZAI3D2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNTAxJyB0YXJnZXQ9J19ibGFuayc+NTY8L2E+XQI1NgI1NqgBRC4gU3Rham5rbyBhbmQgWi4gQ21lbGlrLCDigJxNb2RlbGxpbmcgb2YgQXBwbGUgRnJ1aXQgR3Jvd3RoIGJ5IEFwcGxpY2F0aW9uIG9mIEltYWdlIEFuYWx5c2lzLOKAnSBBZ3JpY3VsdHVyYWUgQ29uc3BlY3R1cyBTY2llbnRpZmljdXMsIFZvbC4gNzAsIE5vLiAxLCAyMDA1LCBwcC4gNTktNjQuZAI4D2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNTAyJyB0YXJnZXQ9J19ibGFuayc+NTc8L2E+XQI1NwI1N78BTC4gQm9kcmlhLCBNLiBGaWFsYSwgUi4gR3VpZGV0dGkgYW5kIFIuIE9iZXJ0aSwg4oCcT3B0aWNhbCBUZWNobmlxdWVzIGZvciBBc3Nlc3NpbmcgdGhlIEZydWl0IE1hdHVyaXR5IFN0YWdlLOKAnSBJbjogQVNBRSBBbm51YWwgSW50ZXJuYXRpb25hbCBNZWV0aW5nL0NJR1IgWFZ0aCBXb3JsZCBDb25ncmVzcywgQ2hpY2FnbywgMjAwNS5kAjkPZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE1MDMnIHRhcmdldD0nX2JsYW5rJz41ODwvYT5dAjU4AjU46gFULiBTLiBZLiBDaG9vbmcsIFMuIEFiYmFzLCBBLiBSLiBTaGFyaWZmLCBSLiBIYWxpbSwgTS4gSC4gUy4gSXNtYWlsLCBSLiBZdW51cywgQS4gU2FsbWlhdG9uIGFuZCBBLiBGYWtocnVsLVJhemksIOKAnERpZ2l0YWwgSW1hZ2UgUHJvY2Vzc2luZyBvZiBQYWxtIE9pbCBGcnVpdHMuIEludGVybmF0aW9uYWws4oCdIEpvdXJuYWwgb2YgRm9vZCBFbmdpbmVlcmluZywgVm9sLiAyLCBOby4gMiwgMjAwNiwgcC4gNy5kAjoPZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE1MDQnIHRhcmdldD0nX2JsYW5rJz41OTwvYT5dAjU5AjU57gFFLiBHdXptw6FuLCBWLiBCYWV0ZW4sIEouIEEuIEZlcm7DoW5kZXogUGllcm5hIGFuZCBKLiBBLiBHYXJjw61hIE1lc2EsIOKAnEEgUG9ydGFibGUgUmFtYW4gU2Vuc29yIGZvciB0aGUgUmFwaWQgRGlzY3JpbWluYXRpb24gb2YgT2xpdmVzIEFjY29yZGluZyB0byBGcnVpdCBRdWFsaXR5LOKAnSBUYWxhbnRhLCBWb2wuIDkzLCAyMDEyLCBwcC4gOTQtOTguIA0KZG9pOjEwLjEwMTYvai50YWxhbnRhLjIwMTIuMDEuMDUzZAI7D2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNTA1JyB0YXJnZXQ9J19ibGFuayc+NjA8L2E+XQI2MAI2MNgBSi4gTS4gR2FyY8OtYSwgRi4gR3V0acOpcnJleiwgTS4gSi4gQmFycmVyYSBhbmQgTS4gQS4gQWxiaSwg4oCcSW5mbHVlbmNlIG9mIEZydWl0IFJpcGVuaW5nIG9uIE9saXZlIE9pbCBRdWFsaXR5LOKAnSBKb3VybmFsIG9mIEFncmljdWx0dXJhbCBhbmQgRm9vZCBDaGVtaXN0cnksIFZvbC4gNDQsIE5vLiAyLCAxOTk2LCBwcC4gNTkwLTU5My4gZG9pOjEwLjEwMjEvamY5NTA0NzlzZAI8D2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNTA2JyB0YXJnZXQ9J19ibGFuayc+NjE8L2E+XQI2MQI2MYwBRy4gTWVkaW9uaSwgTS4tUy4gTGVlIGFuZCBDLi1LLiBUYW5nLCDigJxBIENvbXB1dGF0aW9uYWwgRnJhbWV3b3JrIGZvciBTZWdtZW50YXRpb24gYW5kIEdyb3VwaW5nLOKAnSBFbHNldmllciBTY2llbmNlIEIuVi4sIEFtc3RlcmRhbSwgMjAwMC5kAj0PZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE1MDcnIHRhcmdldD0nX2JsYW5rJz42MjwvYT5dAjYyAjYymAFLLiBOLiBQbGF0YW5pb3RpcyBhbmQgQS4gTi4gVmVuZXRzYW5vcHVvbG9zLCDigJxDb2xvciBJbWFnZSBQcm9jZXNzaW5nIGFuZCBBcHBsaWNhdGlvbnMs4oCdIFNwcmluZ2VyIFZlcmxhZywgQmVybGluLCAyMDAwLiBkb2k6MTAuMTAwNy85NzgtMy02NjItMDQxODYtNGQCPg9kFgJmDxUEWFs8YSBocmVmPScuLi9yZWZlcmVuY2UvcmVmZXJlbmNlc3BhcGVycy5hc3B4P3JlZmVyZW5jZWlkPTg2MTUwOCcgdGFyZ2V0PSdfYmxhbmsnPjYzPC9hPl0CNjMCNjPXAVYuIENoYW5nIGFuZCBKLiBTYWF2ZWRyYSwg4oCcTcOpdG9kb3MgQWx0ZXJuYXRpdm9zIFBhcmEgZWwgTWVqb3JhbWllbnRvIEF1dG9tw6F0aWNvIGRlbCBDb250cmFzdGUgZGUgSW3DoWdlbmVzLOKAnSBDb21wdXRlciBFbmdpbmVlcmluZyB0aGVzaXMsIFNjaG9vbCBvZiBJbmZvcm1hdGljcywgVW5pdmVyc2l0eSBOYXRpb25hbCBvZiBUcnVqaWxsbywgVHJ1amlsbG8sIDIwMDEuZAI/D2QWAmYPFQRYWzxhIGhyZWY9Jy4uL3JlZmVyZW5jZS9yZWZlcmVuY2VzcGFwZXJzLmFzcHg/cmVmZXJlbmNlaWQ9ODYxNTA5JyB0YXJnZXQ9J19ibGFuayc+NjQ8L2E+XQI2NAI2NFNKLiBDLiBSdXNzLCDigJxUaGUgSW1hZ2UgUHJvY2Vzc2luZyBIYW5kYm9vayzigJ0gM3JkIEVkaXRpb24sIENSQyBQcmVzcywgVVNBLCAxOTk4LmQCQA9kFgJmDxUEWFs8YSBocmVmPScuLi9yZWZlcmVuY2UvcmVmZXJlbmNlc3BhcGVycy5hc3B4P3JlZmVyZW5jZWlkPTg2MTUxMCcgdGFyZ2V0PSdfYmxhbmsnPjY1PC9hPl0CNjUCNjVbSi4gQS4gUmljaGFyZHMsIOKAnFJlbW90ZSBTZW5zaW5nIERpZ2l0YWwgSW1hZ2UgQW5hbHlzaXMs4oCdIFNwcmluZ2VyLVZlcmxhZywgQmVybGluLCAxOTk5LmQCQQ9kFgJmDxUEWFs8YSBocmVmPScuLi9yZWZlcmVuY2UvcmVmZXJlbmNlc3BhcGVycy5hc3B4P3JlZmVyZW5jZWlkPTg2MTUxMScgdGFyZ2V0PSdfYmxhbmsnPjY2PC9hPl0CNjYCNjaLAVMuIFcuIFRob21hcywg4oCcRWZmaWNpZW50IEludmVyc2UgQ29sb3IgTWFwIENvbXB1dGF0aW9uLOKAnSBJbjogSi4gQXJ2bywgRWQuLCBHcmFwaGljcyBHZW1zIElJLCBBY2FkZW1pYyBQcmVzcywgQm9zdG9uLCAxOTkxLCBwcC4gMTE2LTEyNS5kAkIPZBYCZg8VBFhbPGEgaHJlZj0nLi4vcmVmZXJlbmNlL3JlZmVyZW5jZXNwYXBlcnMuYXNweD9yZWZlcmVuY2VpZD04NjE1MTInIHRhcmdldD0nX2JsYW5rJz42NzwvYT5dAjY3AjY3vAFSLiBXLiBGbG95ZCBhbmQgTC4gU3RlaW5iZXJnLCDigJxBbiBBZGFwdGl2ZSBBbGdvcml0aG0gZm9yIFNwYXRpYWwgR3JleSBTY2FsZSzigJ0gSW46IEludGVybmF0aW9uYWwgU3ltcG9zaXVtIERpZ2VzdCBvZiBUZWNobmljYWwgUGFwZXJzLCBTb2NpZXR5IGZvciBJbmZvcm1hdGlvbiBEaXNwbGF5cywgMTk3NSwgcHAuIDM2LTM3LmQCDQ9kFgICAQ8WAh8DaGQCDg9kFgICBA8WAh8EBQ1EaXNQbGF5Ok5vbmU7ZAIPD2QWAgIDDxYCHwQFDURpc1BsYXk6Tm9uZTtkAhAPZBYCZg8WAh8DZ2RkJsIgHWX/WqtVVTAIYb8Olsc7gBJCvbaXCvEL6922pxI=" />

Using a Visible Vision System for On-Line Determination of Quality Parameters of Olive Fruits

Abstract Full-Text HTML Download Download as PDF (Size:860KB) PP. 90-98
DOI: 10.4236/fns.2013.47A011    4,566 Downloads   6,332 Views   Citations

ABSTRACT

The increased expectations for food products of high quality and safety standards and the need for accurate, fast and objective quality determination of these characteristics in food products continue to grow. In this situation, new techniques are necessary to enable on-line control of quality parameters. Computer vision provides one alternative for an automated, non-destructive and cost-effective technique in order to accomplish these requirements. The maturity index and sanitary conditions were objectively assessed on-line by image analysis obtained through machine vision, in which algorithms of colour-based segmentation, as well as the main operators to detect edges were used. The proposed methodology is able to estimate the maturity index and the percentage of defects in olives. In addition, this system can be potentially used on-line in the classification of olives, which means that it could help to improve the quality control of olive oil in factories.

Cite this paper

E. Guzmán, V. Baeten, J. Pierna and J. García-Mesa, "Using a Visible Vision System for On-Line Determination of Quality Parameters of Olive Fruits," Food and Nutrition Sciences, Vol. 4 No. 7A, 2013, pp. 90-98. doi: 10.4236/fns.2013.47A011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. V. Ting and R. L. Rouseff, “Citrus Fruits and Their Products Analysis and Technology,” Analysis Technology, Vol. 3, 1986, pp. 1-9.
[2] A. Casas and D. Mallent, “El Color de los Frutos Cítricos. I. Generalidades. II. Factores que Influyen en el Color. Influencia de la Especie, de la Variedad y de la Temperatura,” Agrochim Technol Aliment, Vol. 28, No. 2, 1988, pp. 184-201.
[3] V. Gnanasekharan, R. L. Shewfelt and M. S. Chinnan, “Detection of Color Changes in Green Vegetables,” Journal of Food Science, Vol. 57, No. 1, 1992, pp. 149-154.
[4] M. A. Taylor, E. Rabe, G. Jacobs and M. C. Dodd, “Effect of Harvest Maturity on Pectic Substances, Internal Conductivity, Soluble Solids and Gel Breakdown in Cold Stored ‘Songold’ Plums,” Postharvest Biology and Technology, Vol. 5, No. 4, 1995, pp. 285-294. doi:10.1016/0925-5214(94)00040-Y
[5] L. Lehman-Salada, “Intruments and Operator Effects on Apple Firmness Readings,” HortScience, Vol. 31, No. 6, 1996, pp. 994-997.
[6] M. V. Mickelbart and D. James, “Development of a Dry Matter Maturity Index for Olive (Olea europaea),” New Zealand Journal of Crop and Horticultural Science, Vol. 31, No. 3, 2006, pp. 269-276. doi:10.1080/01140671.2003.9514261
[7] A. Ranalli, A. Tombesi, M. L. Ferrante and G. de Mattia, “Influence of Potato Composition on Chip Color Quality,” Revita delle Sostanze Grasse, Vol. 74, No. 2, 1997, pp. 553-557.
[8] R. Lu and Y. R. Chen, “Hyperspectral Imaging for Safety Inspection of Food and Agricultural Products,” SPIE Proceedings, Vol. 3544, 1998, pp. 121-133. doi:10.1117/12.335771
[9] M. Olmo, A. Nadas and J. M. García, “Nondestructive Methods to Evaluate Maturity Level of Oranges,” Journal of Food Science, Vol. 65, No. 2, 2000, pp. 365-369. doi:10.1111/j.1365-2621.2000.tb16008.x
[10] J. M. García, R. J. Medina and J. M. Olías, “Influence of Fruit Ripening on Olive Oil Quality,” Journal of Food Science, Vol. 63, No. 6, 1998, pp. 1037-1041.
[11] N. Muramatsu, N. Sakurai, R. Yamamoto and D. J. Nevins, “Nondestructive Acoustic Measurement of Firmness for Nectarines, Apricots, Plums, and Tomatoes,” HortSciences, Vol. 31, No. 7, 1996, pp. 1199-1202.
[12] J. M. García, S. Seller and M. C. Pérez-Camino, “Influence of Fruit Ripening on Olive Oil Quality,” Journal of Agricultural and Food Chemistry, Vol. 44, No. 11, 1996, pp. 3516-3520. doi:10.1021/jf950585u
[13] M. Uceda and L. Frias, “Harvest Dates. Evolution of the Fruit Oil Content, Oil Composition and Oil Quality,” Proceedings of the II Seminario Oleícola Internacional, International Olive Oil Council, Cordoba, 1975, pp. 125130.
[14] M. J. Tovar, M. P. Romero, S. Alegre, J. Girona and M. J. Motilva, “Composition and Organoleptic Characteristics of Oil from Arbequina Olive (Olea europaea L.) Trees under Deficit Irrigation,” Journal of the Science of Food and Agriculture, Vol. 82, No. 15, 2002, pp. 1755-1763. doi:10.1002/jsfa.1246
[15] M. J. Ayora-Canada, B. Muik, J. A. García-Mesa, D. Ortega-Calderón and A. Molina-Diaz, “Fourier-Transform Near-Infrared Spectroscopy as a Tool for Olive Fruit Classification and Quantitative Analysis,” Spectroscopy Letters, Vol. 38, No. 6, 2005, pp. 769-785.
[16] J. A. Cayuela, J. M. Garcia and N. Caliani, “NIR Prediction of Fruit Moisture, Free Acidity and Oil Content in Intact Olives,” Grasas y Aceites, Vol. 60, No. 2, 2009, pp. 194-202.
[17] J. A. Cayuela and M. D. P. Camino, “Prediction of Quality of Intact Olives by Near Infrared Spectroscopy,” European Journal of Lipid Science and Technology, Vol. 112, No. 11, 2010, pp. 1209-1217.
[18] L. Leon, L. Rallo and A. Garrido, “Near-Infrared Spectroscopy (NIRS) Analysis of Intact Olive Fruit: An Useful Tool in Olive Breeding Programs,” Grasas y Aceites, Vol. 54, No. 1, 2003, pp. 41-47.
[19] A. Bendini, L. Cerretani, F. Di Virgilo, P. Belloni, M. Boloni-Carbognin and G. Lercker, “Preliminary Evaluation of the Application of the FTIR Spectroscopy to Control the Geographic Origin and Quality of Virgin Olive Oils,” Journal of Food Quality, Vol. 30, No. 4, 2007, pp. 424-437.
[20] R. Korifi, Y. Le Dreau, J. Molinet, J. Artaud and N. Dupuy, “Composition and Authentication of Virgin Olive Oil from French PDO Regions by Chemometric Treatment of Raman Spectra,” Journal of Raman Spectroscopy, Vol. 42, No. 7, 2011, pp. 1540-1547.
[21] Y. Dellaa, R. Korifi, Y. Le Dreau, J. Artaud and N. Dupuy, “Prediction of Geographical Origin of Virgin Olive Oil RDOs by Chemometric Treatment of Raman Spectra,” XXII International Conference on Raman Spectroscopy, AIP Conference Proceedings, Vol. 1267, 2010, pp. 562-563.
[22] X. F. Zhang, X. H. Qi, M. Q. Zou and F. Liu, “Rapid Authentication of Olive Oil by Raman Spectroscopy Using Principal Component,” Analysis Analytical Letters, Vol. 44, No. 12, 2011, pp. 2209-2220.
[23] R. M. El-Abassy, P. Donfack and A. Materny, “Visible Raman Spectroscopy for the Discrimination of Olive Oils from Different Vegetable Oils and the Detection of Adulteration,” Journal of Raman Spectroscopy, Vol. 40, No. 9, 2009, pp. 1284-1289.
[24] M. Q. Zou, X. F. Zhang, X. H. Qi, H. L. Ma, Y. Dong, C. W. Liu, X. Guo and H. Wang, “Rapid Authentication of Olive Oil Adulteration by Raman Spectrometry,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 14, 2009, pp. 6001-6006.
[25] R. M. El-Abassy, P. Donfack and A. Materny, “Assessment of Conventional and Microwave Heating Induced Degradation of Carotenoids in Olive Oil by VIS Raman Spectroscopy and Classical Methods,” Food Research International, Vol. 43, No. 3, 2010, pp. 694-700.
[26] R. M. El-Abassy, P. Donfack and A. Materny, “Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis,” Journal of the American Oil Chemists Society, Vol. 86, No. 6, 2099, pp. 507-511.
[27] B. Muik, B. Lendl, A. Molina-Diaz and M. J. AyoraCanada, “Direct, Reagent-Free Determination of Free Fatty Acid Content in Olive Oil and Olives by Fourier Transform Raman Spectrometry,” Analytica Chimica Acta, Vol. 487, No. 2, 2003, pp. 211-220.
[28] F. Paiva-Martins, V. Rodriguez, R. Calheiros and M. P. M. Marques, “Characterization of Antioxidant Olive Oil Biophenols by Spectroscopic Methods,” Journal of the Science of Food and Agriculture, Vol. 91, No. 2, 2011, pp. 309-314. Using a Visible Vision System for On-Line Determination of Quality Parameters of Olive Fruits
[29] B. Muik, B. Lendl, A. Molina-Diaz, D. Ortega-Calderon and M. J. Ayora-Canada, “Discrimination of Olives According to Fruit Quality Using Fourier Transform Raman Spectroscopy and Pattern Recognition Techniques,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 20, 2004, pp. 6055-6060.
[30] P. Amirante, G. C. Di Rienzo, L. Di Giovacchino, B. Bianchi and P. Catalano, “Evoluzione Tecnologica Degliimpianti di Estrazione Dell’Olio di Oliva,” Olivae, Vol. 48, 1993, pp. 43-53.
[31] P. Amirante and P. Catalano, “Analisi Teorica e Sperimentale Dell’Estrazione Dell’Olio d’Oliva per Centrifugazione,” Rivista Italiana delle Sostanze Grasse, Vol. LXX, 1993, pp. 329-335.
[32] P. Catalano, E. Cini and F. Sarghini, “Applicazione di Modelli Nell’Agroindustria per la Ricerca e la Gestionedei Sistemi Produttivi,” Proceedings of Innovazione delle Macchine e Degli Impianti Nel Settore Agroalimentare per Un’Agricoltura Multifunzionale nel Rispetto Dell’Ambiente, Anacapri, 5-6 June 2006.
[33] R. Furferi, M. Carfagni and M. Daou, “Artificial Neural Network Software for Real-Time Estimation of Olive Oilqualitative Parameters during Continuous Extraction,” Computers and Electronics in Agriculture, Vol. 55, No. 2, 2007, pp. 115-131. doi:10.1016/j.compag.2006.12.006
[34] E. Cini, M. Daou, R. Furferi and L. Recchia, “A Modelling Approach to Extra Virgin Olive Oil Extraction,” Journal of Agricultural Engineering, Vol. 38, No. 4, 2007, pp. 1-10.
[35] C. Bordons and A. Nunez-Reyes, “Model Based Predictive Control of an Olive Oil Mil,” Journal of Food Engineering, Vol. 84, No. 1, 2008, pp. 1-11. doi:10.1016/j.jfoodeng.2007.04.011
[36] J. A. Molina and M. I. Pascual, “Using Optical NIR Sensor for On-Line Virgin Olive Oils Characterization,” Sensors and Actuators B: Chemical, Vol. 107, No. 1, 2005, pp. 64-68. doi:10.1016/j.snb.2004.11.103
[37] A. J. Marquez and A. M. Díaz, “Using Optical Sensor for On-Line Virgin Olive Oil Characterization,” Sensors and Actuators B: Chemical, Vol. 107, No. 1, 2005, pp. 64-68.
[38] A. J. Márquez, “Monitoring Carotenoid and Chlorophyll Pigments in Virgin Olive Oil by Visible-Near Infrared Transmittance Spectroscopy. On-Line Application,” Journal of Near Infrared Spectroscopy, Vol. 11, No. 1, 2003, p. 219.
[39] M. Hermoso, M. Uceda, A. Garcia-ortiz, A. Jimenez and G. Beltran, “Preliminary Results of Nir ‘On-Line’ Measure of Oil Content and Humidity in Olive Cakes from the Two Phases Decanter,” Sensors and Actuators B: Chemical, Vol. 129, 2008, pp. 985-990.
[40] D.-W. Sun, “Inspecting Pizza Topping Percentage and Distribution by a Computer Vision Method,” Journal of Food Engineering, Vol. 44, No. 4, 2000, pp. 245-249. doi:10.1016/S0260-8774(00)00024-8
[41] S. Cordero, L. Lleo, P. Barreiro and M. Ruiz-Altisent, “Peach Multispectral Images Related to Firmness and Maturity,” World Congress: Agricultural Engineering for a Better World, Bonn, 3-7 September 2006, p. 583.
[42] J. Blasco, N. Aleixos and E. Molto, “Computer Vision Detection of Peel Defects in Citrus by Means of a Region Oriented Segmentation Algorithm,” Journal of Food Engineering, Vol. 81, No. 3, 2007, pp. 535-543. doi:10.1016/j.jfoodeng.2006.12.007
[43] N. Kondo, U. Ahmad, M. Monta and H. Murasc, “Machine Vision Based Quality Evaluation of Iyokan Orange Fruit Using Neural Networks,” Computers and Electronics in Agriculture, Vol. 29, No. 1-2, 2000, pp. 135-147. doi:10.1016/S0168-1699(00)00141-1
[44] C. Rosenberger, B. Emile and H. Laurent, “Calibration and Quality Control of Cherries by Artificial Visión,” Journal of Electronical Imaging, Vol. 13, No. 3, 2004, pp. 539-546. doi:10.1117/1.1760082
[45] P. Uthaisombut, “Detecting Defects in Cherries Using Machine Vision,” M.S. Thesis, Computer Science, Michigan State University, East Lansing, 2004.
[46] X. Cheng, Y. Tao, Y. R. Chen and Y. Luo, “NIR/MIR Dual-Sensor Machine Vision System for Online Apple Stem-End/Calyx Recognition,” Transactions of ASAE, Vol. 46, No. 2, 2003, pp. 551-558.
[47] I. Kavdir and D. E. Guyer, “Comparison of Artificial Neural Networks and Statistical Classifiers in Apple Sorting Using Textural Features,” Biosystem Engineerin, No. 89, No, 3, 2004, pp. 331-344. doi:10.1016/j.biosystemseng.2004.08.008
[48] P. M. Mehl, Y. R. Chen, M. S. Kim and D. E. Chan, “Development of Hyperspectral Imaging Technique for the Detection of Apple Surface Defects and Contaminations,” Journal Food Engineering, Vol. 61, No. 1, 2004, pp. 6781. doi:10.1016/S0260-8774(03)00188-2
[49] T. Brosnan and D. W. Sun, “Improving Quality Inspection of Food Products by Computer Vision—A Review,” Journal of Food Engineering, Vol. 61, No. 1, 2004, pp. 316. doi:10.1016/S0260-8774(03)00183-3
[50] F. Pla, J. S. Sanchez and J. M. Sanchiz, “On-Line Machine Vision System for Fast Fruit Colour Sorting Using Low-Cost Architecture,” In: VIII SPIE Conference on Machine Vision Systems for Inspection and Metrology, Boston, 27 August 1999, pp. 277-286. doi:10.1117/12.360279
[51] F. Mendoza and J. M. Aguilera, “Application of Image Analysis for Classification of Ripening Bananas,” Journal of Food Science, Vol. 69, No. 9, 2004, pp. 471-477. doi:10.1111/j.1365-2621.2004.tb09932.x
[52] R. Oberti, R. Guidetti and I. Mignani, “Analisi multispettrale di Immagini per l’Individuazione Precoce Di danni Meccanici Su Prodotti ortofrutticoli: Un’Applicazione su Pere Decana,” Rivista di Ingegneria Agraria, Vol. 30, No. 3, 2004, pp. 137-147.
[53] G. Peri, R. Romaniello, M. Amodio and G. Colelli, “The Application of a Fast Colour Quantization Algorithm for Sorting Peaches for firmness,” In: XXX CIOSTACGIR V CONFERENCE, Torino, 2003.
[54] M. Z. Abdullah, J. Mohamad-Saleh, A. S. Fathinul-Syahir and B. M. N. Mohd-Azemi, “Discrimination and Classification of Fresh-Cut Starfruits (Averrhoa Carambola L.) Using Automated Machine Vision System,” Journal of Food Engineering, Vol. 76, No. 4, 2006, pp. 506-523. doi:10.1016/j.jfoodeng.2005.05.053
[55] A. B. Koc, “Determination of Watermelon Volume Using Ellipsoid Approximation and Image Processing,” Postharvest Biology and Technology, Vol. 45, No. 1, 2007, pp. 366-371. doi:10.1016/j.postharvbio.2007.03.010
[56] D. Stajnko and Z. Cmelik, “Modelling of Apple Fruit Growth by Application of Image Analysis,” Agriculturae Conspectus Scientificus, Vol. 70, No. 1, 2005, pp. 59-64.
[57] L. Bodria, M. Fiala, R. Guidetti and R. Oberti, “Optical Techniques for Assessing the Fruit Maturity Stage,” In: ASAE Annual International Meeting/CIGR XVth World Congress, Chicago, 2005.
[58] T. S. Y. Choong, S. Abbas, A. R. Shariff, R. Halim, M. H. S. Ismail, R. Yunus, A. Salmiaton and A. Fakhrul-Razi, “Digital Image Processing of Palm Oil Fruits. International,” Journal of Food Engineering, Vol. 2, No. 2, 2006, p. 7.
[59] E. Guzmán, V. Baeten, J. A. Fernández Pierna and J. A. García Mesa, “A Portable Raman Sensor for the Rapid Discrimination of Olives According to Fruit Quality,” Talanta, Vol. 93, 2012, pp. 94-98. doi:10.1016/j.talanta.2012.01.053
[60] J. M. García, F. Gutiérrez, M. J. Barrera and M. A. Albi, “Influence of Fruit Ripening on Olive Oil Quality,” Journal of Agricultural and Food Chemistry, Vol. 44, No. 2, 1996, pp. 590-593. doi:10.1021/jf950479s
[61] G. Medioni, M.-S. Lee and C.-K. Tang, “A Computational Framework for Segmentation and Grouping,” Elsevier Science B.V., Amsterdam, 2000.
[62] K. N. Plataniotis and A. N. Venetsanopuolos, “Color Image Processing and Applications,” Springer Verlag, Berlin, 2000. doi:10.1007/978-3-662-04186-4
[63] V. Chang and J. Saavedra, “Métodos Alternativos Para el Mejoramiento Automático del Contraste de Imágenes,” Computer Engineering thesis, School of Informatics, University National of Trujillo, Trujillo, 2001.
[64] J. C. Russ, “The Image Processing Handbook,” 3rd Edition, CRC Press, USA, 1998.
[65] J. A. Richards, “Remote Sensing Digital Image Analysis,” Springer-Verlag, Berlin, 1999.
[66] S. W. Thomas, “Efficient Inverse Color Map Computation,” In: J. Arvo, Ed., Graphics Gems II, Academic Press, Boston, 1991, pp. 116-125.
[67] R. W. Floyd and L. Steinberg, “An Adaptive Algorithm for Spatial Grey Scale,” In: International Symposium Digest of Technical Papers, Society for Information Displays, 1975, pp. 36-37.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.