Effect of Germination on the Nutritional and Protein Profile of Australian Sweet Lupin (Lupinus angustifolius L.)

Abstract Full-Text HTML Download Download as PDF (Size:311KB) PP. 621-626
DOI: 10.4236/fns.2012.35085    6,638 Downloads   11,591 Views   Citations

ABSTRACT

Australian Sweet Lupin (ASL) has a nutritional profile ideally suited for human consumption with high protein and fibre, but low starch and fat content. The nutritional and protein profile of germinated ASL may be better than ungerminated ASL and these improvements would provide further benefits in its use as an ingredient in food applications. In this study the nutritional components such as protein, crude fibre, fat and protein profile of germinated ASL flour following germination at 25℃ and 90% - 95% relative humidity for 9 days were determined. The changes in the pattern of ASL protein during germination were analysed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Germination significantly increased crude fibre contents by 450% (db), total protein contents by 38% (db) and decreased the fat content by 70% (db) at day 9 of germination. Electrophoretic analysis of the protein fractions revealed that during germination up to 9 days, some of the high molecular weight proteins disappeared. Germination represents a means to further improve the nutritional profile of the germinated ASL flour with an increased fibre and protein, but lower fat content.

Cite this paper

R. ., A. James and V. Jayasena, "Effect of Germination on the Nutritional and Protein Profile of Australian Sweet Lupin (Lupinus angustifolius L.)," Food and Nutrition Sciences, Vol. 3 No. 5, 2012, pp. 621-626. doi: 10.4236/fns.2012.35085.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. Jayasena and K. Quail, “Lupin: A Legume with A Future,” Food and Beverage Asia, Vol. 12, 2004, pp. 16-22.
[2] C. D. L. Cuadra, M. Muzquiz, C Burbano, G. Ayet, R. Calvo, A. Osagie and C. Cuadrado, “Alkaloid, α-Galactoside and Phytic Acid Changes in Germinating Lupin Seeds,” Journal of the Science of Food & Agriculture, Vol. 66, No. 3, 1994, pp. 357-364. doi:10.1002/jsfa.2740660313
[3] R. G. Ruiz, K. R. Price, M. E. Rose, A. E. Arthur, D. S. Petterson and R. Fenwick, “The Effect of Cultivar and Environment on Saponin Content of Australian Sweet Lupin seeds,” Journal of the Science of Food & Agriculture, Vol. 69, No. 3, 1995, pp. 347-351. doi:10.1002/jsfa.2740690311
[4] V. Jayasena, H. J. Chih and S. M. Nasar-Abbas, “Functional Properties of Sweet Lupin Protein Isolated and Tested at Various pH Levels,” Research Journal of Agriculture & Biological Science, Vol. 6, No. 2, 2010, pp. 130-137.
[5] D. Zhu, N. S. Hettiarachchy, R. Horax and P. Chen, “Isoflavone Contents in Germinated Soybean Seeds,” Plant Foods for Human Nutrition, Vol. 60, No. 3, 2005, pp. 147-151. doi:10.1007/s11130-005-6931-0
[6] M. M. Mostafa and E. H. Rahma, “Chemical and Nutritional Change in Soybean during Germination,’ Food Chemistry, Vol. 23, No. 4, 1987, pp. 257-275. doi:10.1016/0308-8146(87)90113-0
[7] C. Martinez-Villaluenga, P. Gulewicz, J. Frias, K. Gulewicz and C. Vidal-Valverde, “Assessment of Protein Fractions of Three Cultivars of Pisum sativum L.: Effect of Germination,” European Food Research & Technology, Vol. 226, No. 6, 2008, pp. 1465-1478. doi:10.1007/s00217-007-0678-9
[8] E. Sangronis and C. J. Machado, “Influence of Germination on the Nutritional Quality of Phaseolus vulgaris and Cajanus cajan,” LWT-Food Science & Technology, Vol. 40, No. 1, 2007, pp. 116-120.
[9] M. Duranti, A. Consonni, C. Magni, F. Sessa and A. Scarafoni, “The Major Proteins of Lupin Seed: Characterization and Molecular Properties for Use as Functional and Nutraceutical Ingredients,” Trends in Food Science & Technology, Vol. 19, No.12, 2008, pp. 624-633. doi:10.1016/j.tifs.2008.07.002
[10] M. M. Morad, H. K. Leung, D. L. Hsu and P. L. Finney, “Effect of Germination on Physicochemical and BreadBaking Properties of Yellow Pea, Lentil and Faba Bean Flours and Starches,” Cereal Chemistry, Vol. 57, No. 6, 1980, pp. 390-396.
[11] A. Torres, J. Frias, M. Granito and C. Vidal-Valverde, “Germinated Cajanus cajan Seeds as Ingredients in Pasta Products: Chemical, Biological and Sensory Evaluation,” Food Chemistry, Vol. 101, No. 1, 2007, pp. 202-211. doi:10.1016/j.foodchem.2006.01.018
[12] S. G. Dagnia, D. S. Petterson, R. R. Bell and F. V. Flanagan, “Germination Alters the Chemical Composition and Protein Quality of Lupin Seeds,” Journal of Science & Food Agriculture, Vol. 60, No. 4, 1992, pp. 419423. doi:10.1002/jsfa.2740600403
[13] AOAC, “Official Methods of Analysis of AOAC International,” AOAC International, Gaithersburg, 2000.
[14] E. Sironi, F. Sessa and M. Duranti, “A Simple Procedure of Lupin Seed Protein Fractionation for Selective Food Applications,” European Food Research & Technology, Vol. 221, No. 1-2, 2005, pp. 145-150. doi:10.1007/s00217-005-1151-2
[15] P. K. J. P. D. Wanasundara, U. N. Wanasundara, F. Shahidi, “Changes in Flax (Linum usitatissimum L.) Seed Lipids during Germination,” Journal of American Oil Chemistry Society, Vol. 76, No. 1, 1999, pp. 41-48. doi:10.1007/s11746-999-0045-z
[16] A. E. Mubarak, “Nutritional Composition and Antinutritional Factors of Mung bean Seeds (Phaseolus aureus) as Affected by Some Home Traditional Processes,” Food Chemistry, Vol. 89, No. 4, 2005, pp. 489-495. doi:10.1016/j.foodchem.2004.01.007
[17] A. El-Mahdy and L. El-Sebaiy, “Effect of Germination on the Nitrogenous Constituents, Protein Fractions, in vitro Digestibility and Antinutritional Factors of Fenugreek Seeds (Trigonella foenum graecum L.),” Food Chemistry, Vol. 8, No. 4, 1982, pp. 253-262. doi:10.1016/0308-8146(82)90027-9
[18] D. Hsu, H. Leung, P. Finney and M. Morad, “Effect of Germination on Nutritive Value and Baking Properties of Dry Peas, Lentils, and Faba Beans,” Journal of Food Science, Vol. 45, No. 1, 1980, pp. 87-92. doi:10.1111/j.1365-2621.1980.tb03877.x
[19] L. C. Trugo, C. M. Donangelo, N. M. F. Trugo and K. E. B. Knudsen, “Effect of Heat Treatment on Nutritional Quality of Germinated Legume Seeds,” Journal of Agriculture & Food Chemistry, Vol. 48, No. 6, 2000, pp. 2082-2086. doi:10.1021/jf9913920
[20] M. Martin-Cabrejas, N. Ariza, R. Esteban, E. Molla, K. Waldron and F. Lopez-Andreu, “Effect of Germination on the Carbohydrate Composition of the Dietary Fiber of Peas (Pisum sativum L.),” Journal of Agriculture & Food Chemistry, Vol. 51, No. 5, 2003, pp. 1254-1259. doi:10.1021/jf0207631
[21] B. I. Akaerue and G. I. Onwuka, “Evaluation of the Yield, Protein Content and Functional Properties of Mungbean [Vigna radiata (L.) Wilczek] Protein Isolates as Affected by Processing,” Pakistan Journal of Nutrition, Vol. 9, No. 8, 2010, pp. 728-735. doi:10.3923/pjn.2010.728.735
[22] R. A. Ghavidel and J. Prakash, “Effect of Germination and Dehulling on Functional Properties of Legume Flours,” Journal of Science & Food Agriculture, Vol. 86, 2006, pp. 1189-1195. doi:10.1002/jsfa.2460
[23] T. S. Melo, R. B. Ferreira, A. N. Teixeira, “The Seed Storage Proteins from Lupinus albus,” Phytochemistry, Vol. 37, No. 3, 1994, pp. 641-648. doi:10.1016/S0031-9422(00)90331-5
[24] C. N. Santos, R. B. Ferreira and A. R. Teixeira, “Seed Proteins of Lupinus mutabilis,” Journal of Agriculture Food & Chemistry, Vol. 45, No. 10, 1997, pp. 3821-3828. doi:10.1021/jf970075v
[25] M. Duranti, E. Cucchetti and P. Cerletti, “Change in Composition and Subunits in the Storage Protein of Germinating Lupin Seeds,” Journal of Agriculture Food & Chemistry, Vol. 32, No. 3, 1984, pp. 490-493. doi:10.1021/jf00123a018
[26] H. Lqari, J. Vioque, J. Pedroche and F. Millán, “Lupinus angustifolius Protein Isolates: Chemical Composition, Functional Properties and Protein Characterization,” Food Chemistry, Vol. 76, No. 3, 2002, pp. 349-356. doi:10.1016/S0308-8146(01)00285-0

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.