Biological Effect of Sucralose in Diabetic Rats

HTML  Download Download as PDF (Size: 211KB)  PP. 82-89  
DOI: 10.4236/fns.2013.47A010    4,509 Downloads   7,812 Views  Citations

ABSTRACT

Among people that might take a large amount of sucralose, are diabetic people who are attempting to modify their carbohydrate intake. The objective of this study is to evaluate the impact of sucralose; an artificial sweetener derived from sucrose, at a dose approximately twice the ADI on hyperglycemia, hyperlipidemia and oxidative stress in diabetic rats. Diabetes was induced in male albino rats after an intraperitoneal streptozotocin injection (65 mg/kg body weight). Animals with fasting blood glucose levels ≥250 mg/dl were considered diabetics. Sucralose was dissolved in water and administered to rats daily by oral gavages during a period of 6 weeks at a dose of 11 mg/kg body weight. Animals were divided into 4 groups and treated in parallel for 6 weeks. Control: rats received distilled water, Sucralose: rats received sucralose, Diabetic: diabetic rats received distilled water, Diabeticrats + Sucralose: diabetic rats received sucralose. The administration of sucralose to diabetic rats provoked a significant decrease (P < 0.05) of serum glucose and triglyceride levels, a significant increase (P < 0.05) of total cholesterol, low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein-cholesterol (HDL-C), while has no effect (P > 0.05) on insulin, compared to their respective values in diabetic rats receiving distilled water. Biochemical analysis in brain and testis tissues showed that sucralose has no effect (P > 0.05) on superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px), and glucose-6-phosphate dehydrogenase (G-6-PDH) activities, and glutathione content (GSH), while reduced thiobarbituric acid reactive substances level (TBARS) (P < 0.05), compared to their respective values in diabetic rats receiving distilled water. It could be concluded that consumption of sucralose didn’t induce oxidative stress, has no effect on insulin, reduce glucose absorption and intensify hypercholesterolemia in STZ-induced diabetic rats. Accordingly it is advised that diabetic people consuming high amount of sucralose must check their lipid profile to avoid diabetic complications.

Share and Cite:

H. Saada, N. Mekky, H. Eldawy and A. Abdelaal, "Biological Effect of Sucralose in Diabetic Rats," Food and Nutrition Sciences, Vol. 4 No. 7A, 2013, pp. 82-89. doi: 10.4236/fns.2013.47A010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.