Detection of Stx2 Gene of Escherichia coli and Elevated Levels of Fecal Bacteria in the Cattle Farming Regions of Lake Oconee


The presence of Total coliform, Eschericha coli and enterococci were enumerated in the cattle farming areas of the Oconee Watershed using colilertTM and enterolertTM IDEXX plates, respectively. Microbial Source Tracking (MST) using Bacteroidales molecular markers for ruminant (RuBac) and human (HuBac) specific bacterial groups were used to determine the source of the fecal pollution in the watershed. In the cattle farming regions of the watershed higher levels of fecal bacteria were detected compared to the levels of fecal bacteria at the forested and residential sites. MST indicated that the cattle farming regions (except DC2) of the lake was impacted by fecal pollution from a ruminant source such as cattle. In addition, qPCR for the tuf gene of E. coli and the Stx2 gene that is commonly found in enterohemorragic E. coli O157:H7 were used to evaluate the presence of these bacteria in the study area. E. coli O157:H7 (Stx2 gene) was detected only in the beef cattle regions of the watershed. The presences of E. coli and Stx2 gene in the Oconee Watershed represent a potential public health risk because Lake Oconee and its tributaries are used for recreational activities as well as crop irrigation.

Share and Cite:

D. S. Bachoon, M. M. Lukman and C. D. Burt, "Detection of Stx2 Gene of Escherichia coli and Elevated Levels of Fecal Bacteria in the Cattle Farming Regions of Lake Oconee," Advances in Microbiology, Vol. 2 No. 4, 2012, pp. 523-530. doi: 10.4236/aim.2012.24067.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Cooley, D. Carychao, L. C. Miksza, M. T. Jay, C. Myers, C. Rose, C. Keys, J. Farrar and R. E. Mendrell, “Incidence and Tracking of Escherichia coli O157:H7 in a Major Produce Production Region in California,” PLoS One, Vol. 2, 2007, Article ID: e1159. doi:10.1371/journal.pone.0001159
[2] Centers for Disease Control and Prevention, “Escherichia coli O157:H7,” National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Atlanta, 2010.
[3] K. Cobbaut, D. Berkvens, K. Houf, R. D. Deken and L. D. Zutter, “Escherichia coli O157 Prevalence in Different Cattle Farm Types and Identification of Potential Risk Factors,” Journal of Food Protection, Vol. 7, No. 9, 2009, pp. 1848-1853.
[4] R. O. Elder, J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie and W. W. Laegreid, “Correlation of Enterohemorrhagic Escherichia coli O157 Prevalence in Feces, Hides, and Carcasses of Beef Cattle during Processing,” Proceeding of the National Academy of Sciences, Vol. 97, No 7, 2000, pp. 2999-3003. doi:10.1073/pnas.97.7.2999
[5] A. M. Ibekwe and C. M. Greive, “Detection and Quantification of Escherichia coli O157:H7 in Environmental Samples by Real-Time PCR,” Journal of Applied Microbiology, Vol. 94, 2003, pp. 421-431. doi:10.1046/j.1365-2672.2003.01848.x
[6] T. H. Schmidt, G. Kardos, Z. Lancz, K. Creuzburg, Damjanova and I. B. Nagy, “Virulence Genes and Molecular Typing of Different Groups of Escherichia coli O157 Strains in Cattle,” Applied and Environmental Microbiology, Vol. 75, No. 19, 2009, pp. 6282-6291. doi:10.1128/AEM.00873-09
[7] P. Money, A. F. Kelly, W. J. Gould, J. Denholm-Price, E. J. Threlfall and M. D. Flelder, “Cattle, Weather and Water: Mapping Escherichia coli O157:H7 Infections in Humans in England and Scotland,” Environmental Microbiology, Vol. 12, 2010, pp. 2633-2644.
[8] D. S. Bachoon, T. W. Nichols, K. M. Manoylov and D. R. Oetter, “Assessment of Faecal Pollution and Relative Algal Abundances in Lakes Oconee and Sinclair, Georgia, USA,” Lakes and Reservoirs: Research Management, Vol. 14, 2009, pp. 139-149. doi:10.1111/j.1440-1770.2009.00396.x
[9] M. Muniesa, J. Jofre, C. Garcia-Aljaro and A. R. Blanch, “Occurrence of Escherichia coli O157:H7 and Other Enterohemorrhagic Escherichia coli in the Environment,” Environmental Science and Technology, Vol. 40, 2006, pp. 7141-7149. doi:10.1021/es060927k
[10] V. R. Hill, A. L. Polaczyk, D. Hahn, T. L. Narayanan, J. M. C. Roberts and J. E. Amburgey, “Development of a Rapid Method for Simultaneous Recovery of Diverse Microbes in Drinking Water by Ultrafiltration with Sodium Phosphate and Surfactants,” Applied Environmental Microbiology, Vol. 71, 2005, pp. 6878-6884. doi:10.1128/AEM.71.11.6878-6884.2005
[11] B. Mull and V. R. Hill, “Recovery and Detection of Escherichia coli O157:H7 in Surface Waters Using Ultra Filtration and Real-Time PCR,” Applied and Environmental Microbiology, Vol. 75, 2009, pp. 3593-3597. doi:10.1128/AEM.02750-08
[12] N. Jothikumar and M. W. Griffiths, “Rapid Detection of Escherichia coli O157:H7 with Multiplex Real-Time PCR Assays,” Applied and Environmental Microbiology, Vol. 68, No. 6, 2002, pp. 3169-3171. doi:10.1128/AEM.68.6.3169-3171.2002
[13] A. F. Maheux, F. J. Picard, M. Boissinot, L. Bissonnette, S. Paradis and M. G. Bergeron, “Analytical Comparison of Nine PCR Primer Sets Designed to Detect the Presence of Escherichia coli/Shigella in Water Samples,” Water Research, Vol. 43, 2009, pp. 3019-3028.
[14] G. H. Reischer, D. C. Casper, R. Steinborn, R. L. Mach and A. H. Farnleitner, “Quantitative PCR Method for Sensitive Detection of Ruminant Fecal Pollution in Freshwater and Evaluation of This Method in Alpine Karstic Region,” Applied and Environmental Microbiology, Vol. 72, 2006, pp. 5610-5614. doi:10.1128/AEM.00364-06
[15] A. Layton, L. McKay, D. Williams, V. Garrett, R. Gentry and G. Sayler, “Development of Bacteroides 16S rRNA Gene TaqMan Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water,” Applied and Environmental Microbiology, Vol. 7, No. 6, 2006, pp. 4214-4224. doi:10.1128/AEM.01036-05
[16] S. Mieszkin, J. P. Furet, G. Corthier and M. Gourmelon, “Estimation of Pig Fecal Contamination in a River Catchment by Real-Time PCR Using Two Pig-Specific Bacteroidales 16S rRNA Genetic Markers,” Applied and Environmental Microbiology, Vol. 75, No. 10, 2009, pp. 3045-3054. doi:10.1128/AEM.02343-08
[17] E. L. King, D. S. Bachoon and K. W. Gates, “Rapid Detection of Human Fecal Contamination in Estuarine Environments by PCR Targeting of Bifidobacterium adolescentis,” Journal of Microbial Methods, Vol. 68, 2007, pp. 76-81. doi:10.1016/j.mimet.2006.06.008
[18] C. Morrison, D. Bachoon and K. Gates, “Quantification of Enterococci and Bifidobacteria in Georgia Estuaries Using Conventional and Molecular Methods,” Water Research, Vol. 4, 2008, pp. 4001-4009. doi:10.1016/j.watres.2008.07.021
[19] C. D. Burt and D. S. Bachoon, “Evaluating the Input and Source of Fecal Contamination in the Cattle Farming and Forested Regions of the Oconee Watershed,” Journal of Environmental Protection, 2012, in press.
[20] State of Georgia Department of Natural Resources (GA- DNR), “Total Maximum Daily Load Evaluation Oconee River Basin (Fecal Coliform) SGDNR, Atlanta, Georgia, USA,” 2007.
[21] D. S. Fisher, A. L. Dillard, E. L. Usery, J. L. Steiner and C. L. Neely, “Water Quality in the Headwaters of the Upper Oconee Watershed,” In: K. J. Hatcher, Ed., Proceedings of the 2001 Georgia Water Resource Conference, Institute of Ecology, University of Georgia, Athens, 26-27 March 2001, pp. 198-200.
[22] P. S. Mead, L. Slutsker, V. Dietz, L. F. McCraig, J. S. Bresee, C. Shapiro, P. M. Griffin and R. V. Tauxe, “Food-Related Illnesses and Death in the United States,” Emerging Infectious Diseases, Vol. 5, 1999, pp. 607-625. doi:10.3201/eid0505.990502
[23] T. E. Besser, B. L. Richards, D. H. Rice and D. D. Hancock, “Escherichia coli O157:H7 Infection of Calves: Infectious Dose and Direct Contact Transmission,” Epidemiology & Infection, Vol. 127, 2001, pp. 555-560. doi:10.1017/S095026880100615X
[24] H. Fukushima and R. Seki, “High Numbers of Shiga Toxin-Producing Escherichia coli Found in Bovine Faeces Collected at Slaughter in Japan,” FEMS Microbiology Letters, Vol. 238, 2004, pp. 189-197.
[25] A. P. Williams, L. M. Avery, K. Killham and D. L. Jones, “Persistence, Dissipation, and Activity of Escherichia coli O157:H7 within Sand and Seawater Environments,” FEMS Microbiology Ecology, Vol. 60, 2007, pp. 24-32. doi:10.1111/j.1574-6941.2006.00273.x
[26] J. Bai, X. Shi and T. G. Nagaraja, “A Multiplex Procedure for the Detection of Six Major Virulence Genes in Escherichia coli O157:H7,”Journal of Microbiological Methods, Vol. 82, 2010, pp. 85-89. doi:10.1016/j.mimet.2010.05.003
[27] P. A. Chapman, “Methods Available for the Detection of Escherichia coli O157:H7 in Clinical, Food and Environmental Samples,” World Journal of Microbiology and Biotechnology, Vol. 16, 2000, pp. 733-740. doi:10.1023/A:1008985008240
[28] B. Fremaux, C. Prigent-Combaret, M. L. Delignette-Muller, M. Dothal and C. Vernozy-Rozand, “Persistence of Shiga Toxin Producing Escherichia coli 026 in Cow Slurry,” Letters in Applied Microbiology, Vol. 45, 2007, pp. 55-61. doi:10.1111/j.1472-765X.2007.02146.x
[29] D. S. Bachoon, C. M. Miller, C. P. Green and O. Ernesto, “Comparison of Four Polymerase Chain Reaction Methods for the Rapid Detection of Human Fecal Pollution in Marine and Inland Waters,” International Journal of Microbiology, Vol. 2010, 2010, pp. 595-692. doi:10.1155/2010/595692

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.