Early Proterozoic U-Pb Zircon Ages from Basement Gneiss at the Solovetsky Archipelago, White Sea, Russia

Abstract

The central region of the Neoarchaean Belomorian Mobile Belt (BMB) is, except for the Solovetsky Archipelago, largely covered by the White Sea. A newly discovered granitic gneiss outcrop on Solovetsky Island, Russia, enables a first age determination of the archipelago and evaluation of the hitherto poorly constrained central BMB. Zircons separated from the orthogneiss were analysed with SIMS-SHRIMP and LA-ICP-MS techniques. Both techniques yield a concordant U-Pb age of ca. 2.430 Ga, coinciding with ages of granitic intrusions in the BMB ca. 50 km west of the Solovetsky Islands.

Share and Cite:

S. Schuth, V. I. Gornyy, J. Berndt, S. S. Shevchenko, A. F. Karpuzov and T. Mansfeldt, "Early Proterozoic U-Pb Zircon Ages from Basement Gneiss at the Solovetsky Archipelago, White Sea, Russia," International Journal of Geosciences, Vol. 3 No. 2, 2012, pp. 289-296. doi: 10.4236/ijg.2012.32030.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. V. Bogdanova, B. Bingen, R. Gorbatschev, T. N. Kheraskova, V. I. Kozlov, V. N. Puchkov, et al., “The East European Craton (Baltica) before and during the Assembly of Rodinia,” Precambrian Research, Vol. 160, No. 1-2, 2008, pp. 23-45. doi:10.1016/j.precamres.2007.04.024
[2] J. S. Daly, V. V. Balagansky, M. J. Timmerman and M. J. Whitehouse, “The Lapland-Kola Orogen: Palaeoproterozoic Collision and Accretion of the Northern Fennoscandian Lithosphere,” In: D. G. Gee and R. A. Stephenson, Eds., European Lithosphere Dynamics, The Geological Society London, Memoirs, London, Vol. 32, 2006, pp. 579-598.
[3] A. I. Tugarinov and E. V. Bibikova, “Geochronology of the Baltic Shield by Zircon Determinations,” Nauka, Moscow, 1980.
[4] S. V. Bogdanova and E. V. Bibikova, “The ‘Saamian’ of the Belomorian Mobile Belt: New Geochronological Constraints,” Precambrian Research, Vol. 64, No. 1-4, 1993, pp. 131-152. doi:10.1016/0301-9268(93)90072-A
[5] T. N. Kheraskova, R. B. Sapozhnikov, Yu. A. Volozh and M. P. Antipov, “Geodynamics and Evolution of the Northern East European Platform in the Late Precambrian as Inferred from Regional Seismic Profiling,” Geotectonics, Vol. 40, 2006, pp. 434-449. doi:10.1134/S0016852106060021
[6] M. Mints, A. Suleimanov, N. Zamozhniaya and V. Stupak, “A Three-Dimensional Model of the Early Precambrian Crust under the Southeastern Fennoscandian Shield: Karelia Craton and Belomorian Tectonic Province,” Tectonophysics, Vol. 472, No. 1-4, 2009, pp. 323-339. doi:10.1016/j.tecto.2008.12.008
[7] V. I. Shmygalev, H. M. Shmygaleva and M. A. Korsakov, “Geological Map of the USSR, Scale: 1:200 000,” In: K. A. Shurkin, Ed., Karelian Series, Q-36-XXIX, XXX, State Geological Committee of the USSR, Moscow, 1962.
[8] A. A. Velichko, M. A. Faustova, Y. N. Gribchenko, V. V. Pisareva and N. G. Sudakova, “Glaciations of the East European Plain—Distribution and Chronology,” In: J. Ehlers and P. L. Gibbard, Eds., Quaternary Glaciations— Extent and Chronology, Part I: Europe, Elsevier, Amsterdam, 2004, pp. 337-354.
[9] Yu. G. Shvartsman, “Deep Structure,” In: Yu. G. Shvartsman and I. N. Bolotov, Eds., Natural Environment of the Solovetsky Archipelago under a Changing Climate, The Ural Division of the Russian Academy of Sciences, Yekaterinburg, 2007, pp. 23-25.
[10] H. Downes, E. Balaganskaya, A. Beard, R. Liferovich and D. Demaiffe, “Petrogenetic Processes in the Ultramafic, Alkaline and Carbonatitic Magmatism in the Kola Alkaline Province: A Review,” Lithos, Vol. 85, No. 1-4, 2005, pp. 48-75. doi:10.1016/j.lithos.2005.03.020
[11] V. I. Gornyi, “The Mantle Convection and the Drift of Euro-Asian Plate (According the Remote Geothermal Method Data),” Geoscience and Remote Sensing Symposium, 2002 IEEE International, Vol. 4, 2002, pp. 2029-2035.
[12] Yu. G. Shvartsman and I. N. Bolotov, “Mechanisms of Extrazonal Biocoenois Formation at the Solovetsky Islands,” Ecologia, Vol. 5, 2005, pp. 344-352.
[13] V. I. Gornyy, “Thermal Conditions of Lakes,” In: Yu. G. Shvartsman and I. N. Bolotov, Eds., Natural Environment of the Solovetsky Archipelago under a Changing Climate, The Ural Division of the Russian Academy of Sciences, Yekaterinburg, 2007, pp. 63-66.
[14] I. S. Williams, “U-Th-Pb Geochronology by Ion Microprobe,” In: M. A. McKibben, W. C. Shanks III and W. I. Ridley, Eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Society of Economic Geologists, Littleton, 1998, pp. 1-35.
[15] L. P. Black, S. L. Kamo, C. M. Allen, J. N. Aleinikoff, D. W. Davis, R. J. Korsch, et al., “TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology,” Chemical Geology, Vol. 200, 2003, pp. 155-170. doi:10.1016/S0009-2541(03)00165-7
[16] M. Wiedenbeck, P. Allé, F. Corfu, W. L. Griffin, M. Meier, F. Oberli, A. von Quadt, et al., “Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses,” Geostandards Newsletter, Vol. 19, No. 1, 1995, pp. 1-23. doi:10.1111/j.1751-908X.1995.tb00147.x
[17] K. R. Ludwig, “SQUID 1.02, A User Manual, a Geochronological Toolkit for Microsoft Excel,” Berkeley Geochronology Center Special Publication, Berkeley, 2001.
[18] K. R. Ludwig, “User’s Manual for Isoplot/Ex, Version 3.00, A Geochronological Toolkit for Microsoft Excel,” Berkeley Geochronology Center Special Publication, Berkeley, 2003.
[19] R. H. Steiger and E. J?ger, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geoand Cosmochronology,” Earth and Planetary Science Letters, Vol. 36, No. 3, 1977, pp. 359-362. doi:10.1016/0012-821X(77)90060-7
[20] S. Stacey and J. D. Kramers, “Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model,” Earth and Planetary Science Letters, Vol. 26, 1975, pp. 207-221. doi:10.1016/0012-821X(75)90088-6
[21] S. E. Jackson, N. J. Pearson, W. L. Griffin and E. A. Belousova, “The Application of Laser Ablation-inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology,” Chemical Geology, Vol. 211, No. 1-2, 2004, pp. 47-69. doi:10.1016/j.chemgeo.2004.06.017
[22] J. Ko?ler and P. J. Sylvester, “Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS,” Reviews in Mineralogy and Geochemistry, Vol. 53, No. 1, 2003, pp. 243-275. doi:10.2113/0530243
[23] F. Barker, “Trondhjemite: Definition, Environment and Hypotheses of Origin,” In: F. Barker, Ed., Trondhjemites, Dacites, and Related Rocks, Developments in Petrology, Vol. 6, 1979, pp. 1-12.
[24] A. Streckeisen, “To Each Plutonic Rock Its Proper Name,” Earth-Science Reviews, Vol. 12, No. 1, 1976, pp. 1-33. doi:10.1016/0012-8252(76)90052-0
[25] C. D. Werner, “Saxonian Granulites—Igneous or Lithogenous. A Contribution to the Geochemical Diagnosis of the Original Rocks in High-Metamorphic Complexes,” ZfS-Mitteilungen, Vol. 133, 1987, pp. 221-250.
[26] P. W. O. Hoskin and U. Schaltegger, “The Composition of Zircon and Igneous and Metamorphic Petrogenesis,” Reviews in Mineralogy and Geochemistry, Vol. 53, No. 1, 2003, pp. 27-62. doi:10.2113/0530027
[27] F. Tomaschek, A. K. Kennedy, I. M. Villa, M. Lagos and C. Ballhaus, “Zircons from Syros, Cyclades, Greece— Recrystallization and Mobilization of Zircon during High-Pressure Metamorphism,” Journal of Petrology, Vol. 44, No. 11, 2003, pp. 1977-2002. doi:10.1093/petrology/egg067
[28] B. Fu, T. P. Mernagh, N. T. Kita, A. I. S. Kemp and J. W. Valley, “Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study From the Gidginbung High-Sulphidation Au-Ag-(Cu) Deposit, SE Australia,” Chemical Geology, Vol. 259, 2009, pp. 131-142. doi:10.1016/j.chemgeo.2008.10.035
[29] Y. Nebel-Jacobsen, E. E. Scherer, C. Münker and K. Mezger, “Separation of U, Pb, Lu, and Hf from Single Zircons for Combined U-Pb Dating and Hf Isotope Measurements by TIMS and MC-ICPMS,” Chemical Geology, Vol. 220, No. 1-2, 2005, pp. 105-120. doi:10.1016/j.chemgeo.2005.03.009
[30] V. V. Balagansky, M. J. Timmerman, N. Y. Kozlova and R. V. Kislitsyn, “A 2.44 Ga Syn-Tectonic Mafic Dyke Swarm in the Kolvitsa Belt, Kola Peninsula, Russia: Implications for Early Palaeoproterozoic Tectonics in the North-Eastern Fennoscandian Shield,” Precambrian Research, Vol. 105, No. 2, 2001, pp. 269-287. doi:10.1016/S0301-9268(00)00115-7
[31] A. Gerdes and A. Zeh, “Combined U-Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons: Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany,” Earth and Planetary Science Letters, Vol. 249, 2006, pp. 47-61. doi:10.1016/j.epsl.2006.06.039
[32] E. Bibikova, T. Ski?ld, S. Bogdanova, R. Gorbatschev and A. Slabunov, “Titanite-Rutile Thermochronometry Across the Boundary Between the Archaean Craton in Karelia and the Belomorian Mobile Belt, Eastern Baltic Shield,” Precambrian Research, Vol. 105, 2001, pp. 315-330. doi:10.1016/S0301-9268(00)00117-0
[33] S. B. Lobach-Zuchenko, N. A. Arestova, V. P. Chekulaev, L. K. Levsky, E. S. Bogomolov and I. N. Krylov, “Geochemistry and Petrology of 2.40-2.45 Ga Magmatic Rocks in the North-Western Belomorian Belt, Fennoscandian Shield, Russia,” Precambrian Research, Vol. 92, 1998, pp. 223-250. doi:10.1016/S0301-9268(98)00076-X
[34] V. I. Gornyy, “Distribution of Convective Heat Flow in the White Sea Region According to the Data of a Remote Geothermal Method,” In: Yu. G. Shvartsman and I. N. Bolotov, Eds., Natural Environment of the Solovetsky Archipelago under a Changing Climate, The Ural Division of the Russian Academy of Sciences, Yekaterinburg, 2007, pp. 26-28.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.