[1]
|
Bilal, M., Zou, X., Arslan, M., Tahir, H.E., Usman, M., Li, Z. and Shi, J. (2020) Nondestructive Spectroscopic Techniques for Detection of Fungal and Mycotoxin Infections in Food Products: A Review. Spectroscopy, 35, 28-36.
|
[2]
|
WHO (World Health Organization) (2018) Mycotoxins. https://www.who.int/news-room/fact-sheets/detail/mycotoxins
|
[3]
|
European Commission (2007) Commission Regulation (EC) No. 1126/2007 of 28 September 2007 Amending Regulation (EC) No. 1881/2006: Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Fusarium Toxins in Maize and Maize Products. European Union, Brussels.
|
[4]
|
Hadi, M. and Kashefi, B. (2012) Importance of Mycotoxins and Rapid Detection of Contamination in Hazelnuts. Acta Horticulturae, 963, 47-50. https://doi.org/10.17660/ActaHortic.2012.963.6
|
[5]
|
Hyunjung, M. and Byoung-Kwan, C. (2015) Spectroscopic Techniques for Nondestructive Detection of Fungi and Mycotoxins in Agricultural Materials. Journal of Biosystems Engineering, 40, 67-77. https://doi.org/10.5307/JBE.2015.40.1.067
|
[6]
|
Sturza, R. and Lazacovici, O. (2017) Quantification of Ochratoxin A in Moldavian Wines. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry, 18, 339-334.
|
[7]
|
Kos, G., Lohninger, H. and Krska, R. (2003) Development of a Method for the Determination of Fusarium Fungi on Corn Using Mid-Infrared Spectroscopy with Attenuated Total Reflection and Chemometrics. Analytical Chemistry, 75, 1211-1217. https://doi.org/10.1021/ac0260903
|
[8]
|
Perincherry, L., Lalak-Kańczugowska, J. and Stępień, Ł. (2019) Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins, 11, 664. https://doi.org/10.3390/toxins11110664
|
[9]
|
Manikandan, P., Galgóczy, L., Selvam, K.P., Shobana, C.S., Kocsubé, S., Vágvölgyi, C. and Narendran, V. (2011) Fusarium. In: Liu, D., Ed., Molecular Detection of Human Fungal Pathogens, CRC Press, Boca Raton, FL, 417-433. https://doi.org/10.1201/b11375-55
|
[10]
|
Wu, Y., Li, T., Gong, L., Wang, Y. and Jiang, Y. (2019) Effects of Different Carbon Sources on Fumonisin Production and FUM Gene Expression by Fusarium proliferatum. Toxins, 11, 289. https://doi.org/10.3390/toxins11050289
|
[11]
|
Bhat, R. (2013) Potential Use of Fourier Transform Infrared Spectroscopy for Identification of Molds Capable of Producing Mycotoxins. International Journal of Food Properties, 16, 1819-1829. https://doi.org/10.1080/10942912.2011.609629
|
[12]
|
Tolosa, J., Font, G., Manes, J. and Ferrer, E. (2013) Nuts and Dried Fruits: Natural Occurrence of Emerging Fusarium Mycotoxins. Food Control, 33, 215-220. https://doi.org/10.1016/j.foodcont.2013.02.023
|
[13]
|
Alsuhaibani, A.M.A. (2018) Effects of Storage Periods and Temperature on Mold Prevalence and Aflatoxin Contamination in Nuts. Pakistan Journal of Nutrition, 17, 219-227. https://doi.org/10.3923/pjn.2018.219.227
|
[14]
|
Sandulachi, E., Rubţov, S. and Costiş, V. (2015) Microbiological Contamination of Nuts. International Scientific Practical Conference, Azerbaijan State Agrarian University, Ganja, Azerbaijan, 139-141. (In Russian)
|
[15]
|
Magan, N. and Lacey, J. (1984) Effect of Water Activity, Temperature and Substrate on Interactions between Field and Storage Fungi. Transactions of the British Mycological Society, 82, 83-93. https://doi.org/10.1016/S0007-1536(84)80214-4
|
[16]
|
Gurjui, A., Sandulachi, E. and Silivestru, E. (2013) Microbiological Risk Estimation at Walnuts Long Term Storage. Journal of Food and Packaging Science, Technique and Technologies, No. 2, 93-95.
|
[17]
|
Peltonen, K., Jestoi, M. and Eriksen, G. (2010) Health Effects of Moniliformin: A Poorly Understood Fusarium Mycotoxin. World Mycotoxin Journal, 3, 403-414. https://doi.org/10.3920/WMJ2010.1232
|
[18]
|
Jestoi, M., Kokkonen, M. and Uhlig, S. (2009) What about the “Other” Fusarium Mycotoxins? World Mycotoxin Journal, 2, 181-192. https://doi.org/10.3920/WMJ2008.1124
|
[19]
|
von Bargen, K.W., Lohrey, L., Cramer, B. and Humpf, H.-U. (2012) Analysis of the Fusarium Mycotoxin Moniliformin in Cereal Samples Using 13C2-Moniliformin and High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 60, 3586-3591. https://doi.org/10.1021/jf300323d
|
[20]
|
Ma, N., Abdul Haseeb, H., Xing, F., Su, Z., Shan, L. and Guo, W. (2019) Fusarium avenaceum: A Toxigenic Pathogen Causing Ear Rot on Maize in Yunnan Province, China. Plant Disease, 103, 1424. https://doi.org/10.1094/PDIS-11-18-2034-PDN
|
[21]
|
Sandulachi, E. (2018) Redox Properties of Strawberries and Raspberries. Lambert, Academic Publishing, SIA Omni Scriptum Publishing, Latvia, 109 p. (In Russian)
|
[22]
|
Paterson, R.R.M. and Nelson, L. (2017) Filamentous Fungal Human Pathogens from Food Emphasising Aspergillus, Fusarium and Mucor. Microorganisms, 5, 44. https://doi.org/10.3390/microorganisms5030044
|
[23]
|
Siripatrawan, U. and Makino, Y. (2015) Monitoring Fungal Growth on Brown Rice Grains Using Rapid and Non-Destructive Hyperspectral Imaging. International Journal of Food Microbiology, 199, 93-100. https://doi.org/10.1016/j.ijfoodmicro.2015.01.001
|
[24]
|
De Girolamo, A., Cervellieri, S., Visconti, A. and Pascale, M. (2014) Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy. Toxins, 6, 3129-3143. https://doi.org/10.3390/toxins6113129
|
[25]
|
Zhao, T., Chen, M., Jiang, X., Shen, F., He, X., Fang, Y., Liu, Q. and Hu, Q. (2020) Integration of Spectra and Image Features of Vis/NIR Hyperspectral Imaging for Prediction of Deoxynivalenol Contamination in Whole Wheat Flour. Infrared Physics & Technology, 109, Article ID: 103426. https://doi.org/10.1016/j.infrared.2020.103426
|
[26]
|
Gauthier, L., Bonnin-Verdal, M.N., Marchegay, G., Pinson-Gadais, L. Ducos, C., Richard-Forget, F. and Atanasova-Penichon, V. (2016) Fungal Biotransformation of Chlorogenic and Caffeic Acids by Fusarium graminearum: New Insights in the Contribution of Phenolic Acids to Resistance to Deoxynivalenol Accumulation in cereals. International Journal of Food Microbiology, 221, 61-68. https://doi.org/10.1016/j.ijfoodmicro.2016.01.005
|
[27]
|
Borutova, R. (2020) Alltech European Summer Harvest Survey Shows Variability in Mycotoxin Risk. News & Analysis on the Global Animal Feed Industry. https://www.feednavigator.com/News/Promotional-Features/Alltech-European-Summer-Harvest-Survey-shows-variability-in-mycotoxin-risk
|
[28]
|
Wenneker, M., Pham, K.T.K., Lemmers, M.E.C., de Boer, F.A., van der Lans, A.M., van Leeuwen, P.J., Hollinger, T.C. and Thomma, B.P.H.J. (2016) First Report of Fusarium avenaceum Causing Postharvest Decay on “Conference” Pears in the Netherlands. Plant Disease, 100, 1950. https://doi.org/10.1094/PDIS-01-16-0029-PDN
|
[29]
|
Ploetz, R.C. (2015) Fusarium Wilt of Banana. Phytopathology, 105, 1512-1521. https://doi.org/10.1094/PHYTO-04-15-0101-RVW
|
[30]
|
Nganje, W.E., Bangsund, D.A., Leistritz, F.L., Wilson, W.W. and Tiapo, N.M. (2004) Regional Economic Impacts of Fusarium Head Blight in Wheat and Barley. Applied Economic Perspectives and Policy, 26, 332-347. https://doi.org/10.1111/j.1467-9353.2004.00183.x
|
[31]
|
Chittem, K., Mathew, F.M., Gregoire, M., Lamppa, R.S., Chang, Y.W., Markell, S.G., Bradley, C., Barasubiye, T. and Goswami, R.S. (2015) Identification and Characterization of Fusarium spp. Associated with Root Rots of Field Pea in North Dakota. European Journal of Plant Pathology, 143, 641-649. https://doi.org/10.1007/s10658-015-0714-8
|
[32]
|
Tiwari, N., Ahmed, S., Kumar, S. and Sarker, A. (2018) Fusarium Wilt: A Killer Disease of Lentil. In: Asku, T., Ed., Fusarium-Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers, IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.72508
|
[33]
|
Del Fiore, A., Reverberi, M., Ricelli, A., Pinzari, F., Serranti, S., Fabbri, A.A., Bonifazi, G. and Fanelli, C. (2010) Early Detection of Toxigenic Fungi on Maize by Hyperspectral Imaging Analysis. International Journal of Food Microbiology, 144, 64-71. https://doi.org/10.1016/j.ijfoodmicro.2010.08.001
|
[34]
|
Daou, R., Joubrane, K., Maroun, R.G., Rabbaa Khabbaz, L., Ismail, A. and El Khoury, A. (2021) Mycotoxins: Factors Influencing Production and Control Strategies. AIMS Agriculture and Food, 6, 416-447. https://doi.org/10.3934/agrfood.2021025
|
[35]
|
Perincherry, L., Ajmi, C., Oueslati, S., Waśkiewicz, A. and Stępień, Ł. (2020) Induction of Fusarium Lytic Enzymes by Extracts from Resistant and Susceptible Cultivars of Pea (Pisum sativum L.). Pathogens, 9, 976. https://doi.org/10.3390/pathogens9110976
|
[36]
|
Hope, R., Aldred, D. and Magan, N. (2005) Comparison of Environmental Profiles for Growth and Deoxynivalenol Production by Fusarium culmorum and F. graminearum on Wheat Grain. Letters in Applied Microbiology, 40, 295-300. https://doi.org/10.1111/j.1472-765X.2005.01674.x
|
[37]
|
Górna, K., Pawłowicz, I., Waśkiewicz, A. and Stępień, Ł. (2016) Fusarium proliferatum Strains Change Fumonisin Biosynthesis and Accumulation When Exposed to Host Plant Extracts. Fungal Biology, 120, 884-893. https://doi.org/10.1016/j.funbio.2016.04.004
|
[38]
|
Atanasova-Penichon, V., Pons, S., Pinson-Gadais, L., Picot, A., Gisèle Marchegay, G., Bonnin-Verdal, M.N., Ducos, C., Barreau, C., Roucolle, J., Sehabiague, P., Carolo, P. and Richard-Forget, F. (2012) Chlorogenic Acid and Maize Ear Rot Resistance: A Dynamic Study Investigating Fusarium graminearum Development, Deoxynivalenol Production, and Phenolic Acid Accumulation. Molecular Plant-Microbe Interactions, 25, 1605-1616. https://doi.org/10.1094/MPMI-06-12-0153-R
|
[39]
|
De Oliveira, T.R., de Souza Jaccoud-Filho, D., Henneberg, L., Michel, M.D., Demiate, I.M., Pinto, A.T.B., Machinski Jr., M. and Barana, A.C. (2009) Maize (Zea Mays L) Landraces from the Southern Region of Brazil: Contamination by Fusarium sp, Zearalenone, Physical and Mechanical Characteristics of the Kernels. Brazilian Archives of Biology and Technology, 52, 11-16. https://doi.org/10.1590/S1516-89132009000700002
|
[40]
|
Cerveró, M.C., Castillo, M.A., Montes, R. and Hernández, E. (2007) Determination of Trichothecenes, Zearalenone and Zearalenols in Commercially Available Corn-Based Foods in Spain. Revista Iberoamericana de Micología, 24, 52-55. https://doi.org/10.1016/S1130-1406(07)70013-X
|
[41]
|
Alshannaq, A. and Yu, J.-H. (2017) Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. International Journal of Environmental Research and Public Health, 14, 632. https://doi.org/10.3390/ijerph14060632
|
[42]
|
Schollenberger, M., Müller, H.-M., Rüfle, M., Suchy, S., Planck, S. and Drochner, W. (2005) Survey of Fusarium Toxins in Foodstuffs of Plant Origin Marketed in Germany. International Journal of Food Microbiology, 97, 317-326. https://doi.org/10.1016/j.ijfoodmicro.2004.05.001
|
[43]
|
Alemu, T., Birhanu, G., Azerefgne, F. and Skinnes, H. (2008) Evidence for Mycotoxin Contamination of Maize in Southern Ethiopia: The Need for Further Multidisciplinary Research. Cereal Research Communications, 36, 337-338.
|
[44]
|
Witaszak, N., Lalak-Kańczugowska, J., Waśkiewicz, A. and Stępień, L. (2020) The Impacts of Asparagus Extract Fractions on Growth and Fumonisins Biosynthesis in Fusarium proliferatum. Toxins, 12, 95. https://doi.org/10.3390/toxins12020095
|
[45]
|
Bankole, S.A. (1994) Changes in Moisture Content, Fungal Infection and Kernel Germ Inability of Maize in Storage. International Journal of Tropical Plant Diseases, 12, 213-218.
|
[46]
|
Brown, D., Butchko, R., Busman, M. and Proctor, R. (2007) The Fusarium verticillioides FUM Gene Cluster Encodes a Zn(II)2Cys6 Protein That Affects FUM Gene Expression and Fumonisin Production. Eukaryotic Cell, 6, 1210-1218. https://doi.org/10.1128/EC.00400-06
|
[47]
|
Sun, L., Wang, S., Zhang, W., Chi, F., Hao, X., Bian, J. and Li, Y. (2020) First Report of Sheath Rot of Corn Caused by Fusarium verticillioides in Northeast China. Journal of Plant Pathology, 102, 1301-1302. https://doi.org/10.1007/s42161-020-00582-7
|
[48]
|
Baquião, A.C., Zorzete, P., Reis, T.A., Assunção, E., Vergueiro, S. and Correa, B. (2012) Mycoflora and Mycotoxins in Field Samples of Brazil Nuts. Food Control, 28, 224-229. https://doi.org/10.1016/j.foodcont.2012.05.004
|
[49]
|
Logrieco, A.F., Ferracane, R., Cozzi, G., Haidukowsky, M., Susca, A., Mulè, G. and Ritieni, A. (2011) Fumonisin B2 by Aspergillus niger in the Grape-Wine Chain: An Additional Potential Mycotoxicological Risk. Annals of Microbiology, 61, 1-3. https://doi.org/10.1007/s13213-010-0133-1
|
[50]
|
Covert, S.F. (1998) Supernumerary Chromosomes in Filamentous Fungi. Current Genetics, 33, 311-319. https://doi.org/10.1007/s002940050342
|
[51]
|
Bolton, S.L., Brannen, P.M. and Glenn, A.E. (2016) A Novel Population of Fusarium fujikuroi Isolated from Southeastern U.S. Winegrapes Reveals the Need to Re-Evaluate the Species’ Fumonisin Production. Toxins, 8, 254. https://doi.org/10.3390/toxins8090254
|
[52]
|
Richard, J.L., Payne, G.A., Desjardins, A.E., Maragos, C., Norred III, W.P., Pestka, J.J., Phillips, T.D., van Egmond, H.P., Vardon, P.J., Whitaker, T.B. and Wood, G. (2003) Mycotoxins: Risks in Plant, Animal and Human Systems. Council for Agricultural Science and Technology, Ames, IA.
|
[53]
|
Reverberi, M., Ricelli, A., Zjalic, S., Fabbri, A.A. and Fanelli, C. (2010) Natural Functions of Mycotoxins and Control of Their Biosynthesis in Fungi. Applied Microbiology and Biotechnology, 87, 899-911. https://doi.org/10.1007/s00253-010-2657-5
|
[54]
|
Hope, R. and Magan, N. (2003) Two Dimensional Environmental Profiles of Growth, Deoxynivalenol and Nivalenol Production by Fusarium culmorum on a Wheat-Based Substrate. Letters in Applied Microbiology, 37, 70-74. https://doi.org/10.1046/j.1472-765X.2003.01358.x
|
[55]
|
Sturza, R., Gãinã, B., Ionete, E.R. and Costinel, D. (2017) Autenticitatea şi inofensivitatea produselor uvologice. MS Logo, Chişinãu, 47-90.
|
[56]
|
Marín, P., Magan, N., Vázquez, C. and González-Jaén, M.T. (2010) Differential Effect of Environmental Conditions on the Growth and Regulation of the Fumonisin Biosynthetic Gene FUM1 in the Maize Pathogens and Fumonisin Producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiology Ecology, 73, 303-311. https://doi.org/10.1111/j.1574-6941.2010.00894.x
|
[57]
|
Jimenez-Garcia, S.N., Garcia-Mier, L., Garcia-Trejo, J.F., Ramirez-Gomez, X.S., Ramon, G., Guevara-Gonzalez, R.G. and Feregrino-Perez, A.A. (2018) Fusarium Mycotoxins and Metabolites That Modulate Their Production. In: Ascun, T., Ed., Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers, IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.72874
|
[58]
|
Vylkova, S. (2017) Environmental pH Modulation by Pathogenic Fungi as a Strategy to Conquer the Host. PLoS Pathogens, 13, e1006149. https://doi.org/10.1371/journal.ppat.1006149
|
[59]
|
Sandulachi, E. (2020) Water Activity in Food Products. Monograph, Tehnica-UTM, Chisinau. (In Romanian)
|
[60]
|
Miller, J.D. (2001) Factors That Affect the Occurrence of Fumonisin. Environmental Health Perspectives, 109, 321-324. https://doi.org/10.1289/ehp.01109s2321
|
[61]
|
López-Errasquín, E., Vázquez, C., Jiménez, M. and González-Jaén, M.T. (2007) Real-Time RT-PCR Assay to Quantify the Expression of FUM1 and FUM19 Genes from the Fumonisin-Producing Fusarium verticillioides. Journal of Microbiological Methods, 68, 312-317. https://doi.org/10.1016/j.mimet.2006.09.007
|
[62]
|
Kochiieru, Y., Mankevi, A., Cesevi, J., Semaškienè, R., Ramanauskienè, J., Gorash, A., Janaviciene, S. and Venslovas, E. (2021) The Impact of Harvesting Time on Fusarium Mycotoxins in Spring Wheat Grain and Their Interaction with Grain Quality. Agronomy, 11, 642. https://doi.org/10.3390/agronomy11040642
|
[63]
|
Waskiewicz, A., Stepień, L., Wilman, K. and Kachlicki, P. (2013) Diversity of Pea-Associated F. proliferatum and F. verticillioides Populations Revealed by FUM1 Sequence Analysis and Fumonisin Biosynthesis. Toxins, 5, 488-503. https://doi.org/10.3390/toxins5030488
|
[64]
|
Begum, F. and Samajpati, N. (2000) Mycotoxin Production on Rice, Pulses and Oilseeds. Naturwissenschaften, 87, 275-277. https://doi.org/10.1007/s001140050720
|
[65]
|
Bojja, R.S., Cerny, R.L., Proctor, R.H. and Du, L. (2004) Determining the Biosynthetic Sequence in the Early Steps of the Fumonisin Pathway by Use of Three Gene-Disruption Mutants of Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 52, 2855-2860. https://doi.org/10.1021/jf035429z
|
[66]
|
Gautier, C., Pinson-Gadais, L., Verdal-Bonnin, M.-N., Ducos, C., Tremblay, J., Chéreau, S., Atanasova, V. and Richard-Forget, F. (2020) Investigating the Efficiency of Hydroxycinnamic Acids to Inhibit the Production of Enniatins by Fusarium avenaceum and Modulate the Expression of Enniatins Biosynthetic Genes. Toxins, 12, 735. https://doi.org/10.3390/toxins12120735
|
[67]
|
Wagacha, J. and Muthomi, J. (2008) Mycotoxin Problem in Africa: Current Status, Implications to Food Safety and Possible Management Strategies. International Journal of Food Microbiology, 124, 1-12. https://doi.org/10.1016/j.ijfoodmicro.2008.01.008
|
[68]
|
Dix, N.J. and Webster, J. (1995) Fungi of Extreme Environments. In: Fungal Ecology, Springer, Dordrecht, 322-340. https://doi.org/10.1007/978-94-011-0693-1_12
|
[69]
|
Rheeder, J.P., Marasas, W.F.O. and Vismer, H.F. (2002) Production of Fumonisin Analogs by Fusarium Species. Applied and Environmental Microbiology, 68, 2101-2105. https://doi.org/10.1128/AEM.68.5.2101-2105.2002
|
[70]
|
Greeff-Laubscher, M.R., Beukes, I., Marais, G.J. and Jacobs, K. (2020) Mycotoxin Production by Three Different Toxigenic Fungi Genera on Formulated Abalone Feed and the Effect of an Aquatic Environment on Fumonisins. International Journal on Fungal Biology, 11, 105-117. https://doi.org/10.1080/21501203.2019.1604575
|
[71]
|
Őzcelik, S. and Őzcelik, N. (2004) Interacting Effects of Time, Temperature, pH and Simple Sugars on Biomass and Toxic Metabolite Production by Three Alternaria spp. Mycopathologia, 109, 171-175. https://doi.org/10.1007/BF00436806
|
[72]
|
Liu, J., Sun, L.H., Zhang, N.Y., Guo, J., Li, C., Rajput, S.A. and Qi, D. (2016) Effects of Nutrients in Substrates of Different Grains on Aflatoxin B 1 Production by Aspergillus flavus. BioMed Research International, 2016, Article ID: 7232858. https://doi.org/10.1155/2016/7232858
|
[73]
|
Uppala, S.S., Bowen, K.L. and Woods, F.M. (2013) Pre-Harvest Aflatoxin Contamination and Soluble Sugars of Peanut. Peanut Science, 40, 40-51. https://doi.org/10.3146/PS12-9.1
|
[74]
|
Cheli, F., Campagnoli, A., Pinotii, L., Savoini, G. and Dell’orto, V. (2009) Electronic Nose for Determination of Aflatoxins in Maize. Biotechnologie, Agronomie, Société et Environnement/Biotechnology, Agronomy, Society and Environment, 13, 39-43.
|
[75]
|
Djeugap, J.F., Ghimire, S., Wanjuki, I., Muiruri, A. and Harvey, J. (2019) Mycotoxin Contamination of Edible Non-Timber Forest Products in Cameroon. Toxins, 11, 430. https://doi.org/10.3390/toxins11070430
|
[76]
|
Chen, P. and Sun, Z. (1991) A Review of Non-Destructive Methods for Quality Evaluation and Sorting of Agricultural Products. Journal of Agricultural Engineering Research, 49, 85-98. https://doi.org/10.1016/0021-8634(91)80030-I
|
[77]
|
Lee, K.M., Herrman, T.J., Bisrat, Y. and Murray, S.C. (2014) Feasibility of Surface-Enhanced Raman Spectroscopy for Rapid Detection of Aflatoxins in Maize. Journal of Agricultural and Food Chemistry, 62, 4466-4474. https://doi.org/10.1021/jf500854u
|
[78]
|
Kizis, D., Vichou, A.E. and Natskoulis, P.I. (2021) Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. Sustainability, 13, 2537. https://doi.org/10.3390/su13052537
|
[79]
|
Balabin, R.M., Safieva, R.Z. and Lomakina, E.I. (2010) Gasoline Classification Using Near Infrared (NIR) Spectroscopy Data: Comparison of Multivariate Techniques. Analytica Chimica Acta, 67, 27-35. https://doi.org/10.1016/j.aca.2010.05.013
|
[80]
|
Levasseur-Garcia, C., Bailly, S., Kleiber, D. and Bailly, J.D. (2015) Assessing Risk of Fumonisin Contamination in Maize Using Near-Infrared Spectroscopy. Journal of Chemistry, 2015, Article ID: 485864. https://doi.org/10.1155/2015/485864
|
[81]
|
Lahlali, R., Kumar, S., Wang, L., Forseille, L., Sylvain, N., Korbas, M., Muir, D., Swerhone, G., Lawrence, J.R., Fobert, P.R., Peng, G. and Karunakaran, C. (2016) Cell Wall Biomolecular Composition Plays a Potential Role in the Host Type II Resistance to Fusarium Head Blight in Wheat. Frontiers in Microbiology, 7, 910. https://doi.org/10.3389/fmicb.2016.00910
|
[82]
|
Orina, I., Manley, M. and Williams, P.J. (2017) Non-Destructive Techniques for the Detection of Fungal Infection in Cereal Grains. Food Research International, 100, 74-86. https://doi.org/10.1016/j.foodres.2017.07.069
|
[83]
|
Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U. and Herppich, W.B. (2011) Early Detection of Fusarium Infection in Wheat Using Hyper-Spectral Imaging. Computers and Electronics in Agriculture, 75, 304-312. https://doi.org/10.1016/j.compag.2010.12.006
|
[84]
|
Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., Jayas, D.S. and Siliveru, K. (2016) Detection of Fungal Infection in Pistachio Kernel by Long-Wave Near-Infrared Hyperspectral Imaging Technique. Quality Assurance and Safety of Crops & Foods, 8, 129-135. https://doi.org/10.3920/QAS2015.0606
|
[85]
|
Williams, P.J., Geladi, P., Britz, T.J. and Manley, M. (2012) Near-Infrared (NIR) Hyperspectral Imaging and Multivariate Image Analysis to Study Growth Characteristics and Differences between Species and Strains of Members of the Genus Fusarium. Analytical and Bioanalytical Chemistry, 404, 1759-1769. https://doi.org/10.1007/s00216-012-6313-z
|
[86]
|
Paolesse, R., Nardis, S., Monti, D., Stefanelli, M. and Di Natale, C. (2017) Porphyrinoids for Chemical Sensor Applications. Chemical Reviews, 117, 2517-2583. https://doi.org/10.1021/acs.chemrev.6b00361
|
[87]
|
Jia, B., Wang, W., Ni, X.Z., Chu, X., Yoon, S.C. and Lawrence, K.C. (2020) Detection of Mycotoxins and Toxigenic Fungi in Cereal Grains Using Vibrational Spectroscopic Techniques: A Review. World Mycotoxin Journal, 13, 163-178. https://doi.org/10.3920/WMJ2019.2510
|
[88]
|
Narvankar, D.S., Singh, C.B., Jayas, D.S. and White, N.D.G. (2009) Assessment of Soft X-Ray Imaging for Detection of Fungal Infection in Wheat. Biosystems Engineering, 103, 49-56. https://doi.org/10.1016/j.biosystemseng.2009.01.016
|
[89]
|
Chelladurai, V., Jayas, D. and White, N. (2010) Thermal Imaging for Detecting Fungal Infection in Stored Wheat. Journal of Stored Products Research, 46, 174-179. https://doi.org/10.1016/j.jspr.2010.04.002
|
[90]
|
Chaitra, C. and Suresh, K.V. (2016) Identification and Evaluation of Technology for Detection of Aflatoxin Contaminated Peanut. Communications on Applied Electronics (CAE), 4, 46-50.
|
[91]
|
Mehrabi, R., Gohari, A.M. and Kema, G.H.J. (2017) Karyotype Variability in Plant-Pathogenic Fungi. Annual Review of Phytopathology, 4, 483-503. https://doi.org/10.1146/annurev-phyto-080615-095928
|
[92]
|
Vanheule, A., Audenaert, K., Warris, S., van de Geest, H., Schijlen, E., Hőfte, M., De Saeger, S., Haesaert, G., Waalwijk, C. and van der Lee, T. (2016) Living Apart Together: Crosstalk between the Core and Supernumerary Genomes in a Fungal Plant Pathogen. BMC Genomics, 17, Article No. 670. https://doi.org/10.1186/s12864-016-2941-6
|
[93]
|
Golob, P. (2007) On-Farm Mycotoxin Control in Food and Feed Grain. Food and Agriculture Organization of the United Nations, Rome.
|
[94]
|
Rose, L.J., Okoth, S., Flett, B.C., van Rensburg, B.J. and Viljoen, A. (2019) Preharvest Management Strategies and Their Impact on Mycotoxigenic Fungi and Associated Mycotoxins. In: Njobeh, P.B. and Stepman, F., Eds., Fungi and Mycotoxins, IntechOpen, Rijeka.
|
[95]
|
Mannaa, M. and Kim, K.D. (2017) Control Strategies for Deleterious Grain Fungi and Mycotoxin Production from Preharvest to Postharvest Stages of Cereal Crops: A Review. Life Science and Natural Resources Research, 25, 13-27.
|
[96]
|
Mahuku, G., Nzioki, H.S., Mutegi, C., Kanampiu, F., Narrod, C. and Makumbi, D. (2019) Pre-Harvest Management Is a Critical Practice for Minimizing Aflatoxin Contamination of Maize. Food Control, 96, 219-226. https://doi.org/10.1016/j.foodcont.2018.08.032
|
[97]
|
Henry, P.M., Kirkpatrick, S.C., Islas, C.M., Pastrana, A.M., Yoshisato, J.A., Koike, S.T., Daugovish, O. and Gordon, T.R. (2017) The Population of Fusarium oxysporum f. sp. fragariae, Cause of Fusarium Wilt of Strawberry, in California. Plant Disease, 101, 550-556. https://doi.org/10.1094/PDIS-07-16-1058-RE
|
[98]
|
Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C. and Visconti, A. (2005) Effect of Fungicides on the Development of Fusarium Head Blight, Yield and Deoxynivalenol Accumulation in Wheat Inoculated under Field Conditions with Fusarium graminearum and Fusarium culmorum. Journal of the Science of Food and Agriculture, 85, 191-198. https://doi.org/10.1002/jsfa.1965
|
[99]
|
Rychlik, M., Humpf, H.U., Marko, D., Dänicke, S., Mally, A., Berthiller, F., Klaffke, H. and Lorenz, N. (2014) Proposal of a Comprehensive Definition of Modified and Other Forms of Mycotoxins Including “Masked” Mycotoxins. Mycotoxin Research, 30, 197-205. https://doi.org/10.1007/s12550-014-0203-5
|
[100]
|
FAO/IAEA Training and Reference Center for Food and Pesticide Control (2001) Manual on the Application of the HACCP System in Mycotoxin Prevention and Control. Food and Agriculture Organization, Rome, 73.
|
[101]
|
Nelson, P.E., Desjardins, A.E. and Plattner, R.D. (1993) Fumonisins, Mycotoxins Produced by Fusarium Species: Biology, Chemistry and Significance. Annual Review of Phytopathology, 31, 233-252. https://doi.org/10.1146/annurev.py.31.090193.001313
|
[102]
|
Munkvold, G. (2017) Fusarium Species and Their Associated Mycotoxins. In: Moretti, A. and Susca, A., Eds., Mycotoxigenic Fungi. Methods in Molecular Biology, Vol. 1542, Humana Press, New York, NY, 51-106. https://doi.org/10.1007/978-1-4939-6707-0_4
|
[103]
|
Salazar-González, C., Velásquez-Ortiz, D. and Gómez-López, E. (2020) Detection of Mycotoxins Produced by Fusarium Species in Colombia. Agronomía Colombiana, 38, 197-204. https://doi.org/10.15446/agron.colomb.v38n2.77176
|
[104]
|
Koike, S.T. and Gordon, T.R. (2015) Management of Fusarium Wilt of Strawberry. Crop Protection, 73, 67-72. https://doi.org/10.1016/j.cropro.2015.02.003
|
[105]
|
Bankole, S.A. and Adebanjo, A. (2003) Mycotoxins in Food in West Africa: Current Situation and Possibilities of Controlling It. African Journal of Biotechnology, 2, 254-263. https://doi.org/10.5897/AJB2003.000-1053
|
[106]
|
Ferrigo, D., Raiola, A. and Causin, R. (2016) Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules, 21, 627. https://doi.org/10.3390/molecules21050627
|
[107]
|
Anoman, A., Koffi, K., Aboua, K. and Koussemon, M. (2018) Determination of ETM, Histamine and Mycotoxins in Garba, a Traditional Ivoirian Meal. American Journal of Analytical Chemistry, 9, 245-256. https://doi.org/10.4236/ajac.2018.94019
|