[1]
|
Ferreira, L.E., Muniz, B.V., Bittar. T.O., Berto, L.A., Figueroba, S.R., Groppo, F.C. and Pereira, A.C. (2014) Effect of Particles of Ashes Produced from Sugarcane Burning on the Respiratory System of Rats. Environmental Research, 135, 304-310. https://doi.org/10.1016/j.envres.2014.07.030
|
[2]
|
Cao, B., Nagarajan, K. and Loh, K.-C. (2009) Biodegradation of Aromatic Compounds: Current Status and Opportunities for Biomolecular Approaches. Applied Microbiology and Biotechnology, 85, 207-228. https://doi.org/10.1007/s00253-009-2192-4
|
[3]
|
Peng, R.-H., Xiong, A.-S., Xue, Y., Fu, X.-Y., Gao, F., Zhao, W., Tian, Y.-S. and Yao, Q.-H. (2008) Microbial Biodegradation of Polyaromatic Hydrocarbons. FEMS Microbiology Reviews, 32, 927-955. https://doi.org/10.1111/j.1574-6976.2008.00127.x
|
[4]
|
Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V. and Sharma, K.D. (2015) Bioremediation of Polyaromatic Hydrocarbons (PAHs) Using Rhizosphere Technology. Brazilian Journal of Microbiology, 46, 7-21. https://doi.org/10.1590/S1517-838246120131354
|
[5]
|
Menn, F.M., Applegate, B.M. and Sayler, G.S. (1993) NAH Plasmid-Mediated Catabolism of Anthracene and Phenanthrenen to Naphthoic Acids. Applied and Environmental Microbiology, 59, 1938-1942. https://doi.org/10.1128/AEM.59.6.1938-1942.1993
|
[6]
|
Leblond, J.D., Schultz, T.W. and Sayler, G.S. (2001) Observations on the Preferential Biodegradation of Selected Components of Polyaromatic Hydrocarbon Mixtures. Chemosphere, 42, 333-343. https://doi.org/10.1016/S0045-6535(00)00161-2
|
[7]
|
Goyal, A.K. and Zylstra, G.J. (1997) Genetics of Naphthalene and Phenanthrene Degradation by Comamonas testosteroni. Journal of Industrial Microbiology & Biotechnology, 19, 401-440. https://doi.org/10.1038/sj.jim.2900476
|
[8]
|
Daane, L.L., Harjono, I., Zylstra, G.J. and Häggblom, M.M. (2001) Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Associated with the Rhizosphere of Salt Marsh Plants. Applied and Environmental Microbiology, 67, 2683-2691. https://doi.org/10.1128/AEM.67.6.2683-2691.2001
|
[9]
|
Kulakov, L.A., Allen, C.C.R., Lipscomb, D.A. and Larkin, M.J. (2000) Cloning and Characterization of a Novel cis-Naphthalene Dihydrodiol Dehydrogenase Gene (narB) from Rhodococcus sp. NCIMB 12038. FEMS Microbiology Letters, 182, 327-331. https://doi.org/10.1111/j.1574-6968.2000.tb08916.x
|
[10]
|
Kulakov, L.A., Chen, S.C., Allen, C.C.R. and Larkin, M.J. (2005) Web-Type Evolution of Rhodococcus Gene Clusters Associated with Utilization of Naphthalene. Applied and Environmental Microbiology, 71, 1754-1764. https://doi.org/10.1128/AEM.71.4.1754-1764.2005
|
[11]
|
Dandare, S.U., Skvortsov, T., Arkhipova, K. and Allen, C.C.R. (2018) Draft Genome Sequence of Rhodococcus sp. Strain NCIMB 12038, a Naphthalene-Degrading Bacterium. Genome Announcements, 6, e01420-e01417. https://doi.org/10.1128/genomeA.01420-17
|
[12]
|
Mueller, J.G., Chapman, P.J., Blattmann, B.O. and Pritchard, P.H. (1990) Isolation and Characterization of a Fluoranthene-Utilizing Strain of Pseudomonas paucimobilis. Applied and Environmental Microbiology, 56, 1079-1086. https://doi.org/10.1128/AEM.56.4.1079-1086.1990
|
[13]
|
Story, S.P., Kline, E.L., Hughes, T.A., Riley, M.B. and Hayasaka, S.S. (2004) Degradation of Aromatic Hydrocarbons by Sphingomonas paucimobilis Strain EPA505. Archives of Environmental Contamination and Toxicology, 47, 168-176. https://doi.org/10.1007/s00244-004-3069-2
|
[14]
|
Kweon, O., Kim, S.J., Jones, R.C., Freeman, J.P., Adjei, M.D., Edmondson, R.D. and Cerniglia, C.E. (2007) A Polyomic Approach to Elucidate the Fluoranthene-Degradative Pathway in Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 189, 4635-4647. https://doi.org/10.1128/JB.00128-07
|
[15]
|
Kiyohara, H., Nagao, K., Kouno, K. and Yano, K. (1982) Phenanthrene-Degrading Phenotype of Alcaligenes faecalis AFK2. Applied and Environmental Microbiology, 43, 458-461. https://doi.org/10.1128/AEM.43.2.458-461.1982
|
[16]
|
Lozada, M., Riva Mercadal, J.P., Guerrero, L.D., Di Marzio, W.D., Ferrero, M.A. and Dionisi, H.M. (2008) Novel Aromatic Ring-Hydroxylating Dioxygenase Genes from Coastal Marine Sediments of Patagonia. BMC Microbiology, 8, Article No. 50. https://doi.org/10.1186/1471-2180-8-50
|
[17]
|
Seo, J.-S., Keum, Y.-S., Hu, Y.T., Lee, S.E. and Li, Q.X. (2006) Phenanthrene Degradation in Arthrobacter sp. P1-1: Initial 1,2-, 3,4- and 9,10-Dioxygenation, and Meta- and Ortho-Cleavages of Naphthalene-1,2-Diol after Its Formation from Naphthalene-1,2-Dicarboxylic Acid and Hydroxyl Naphthoic Acids. Chemosphere, 65, 2388-2394. https://doi.org/10.1016/j.chemosphere.2006.04.067
|
[18]
|
Seo, J., Keum, Y., Hu, Y., Lee, S. and Li, Q.X. (2006) Degradation of Phenanthrene by Burkholderia sp. C3: Initial 1,2- and 3,4-Dioxygenation and Meta- and Ortho-Cleavage of Naphthalene-1,2-Diol. Biodegradation, 18, 123-131. https://doi.org/10.1007/s10532-006-9048-8
|
[19]
|
Azwani, F., Suzuki, K., Honjyo, M., Tashiro, Y. and Futamata, H. (2017) Draft Genome Sequence of Comamonas testosteroni R2, Consisting of Aromatic Compound Degradation Genes for Phenol Hydroxylase. Genome Announcements, 5, e00875-e00817. https://doi.org/10.1016/j.chemosphere.2006.04.067
|
[20]
|
Adebusuyi, A.A., Smith, A.Y., Gray, M.R. and Foght, J.M. (2012) The EmhABC Efflux Pump Decreases the Efficiency of Phenanthrene Biodegradation by Pseudomonas fluorescens Strain LP6a. Applied Microbiology and Biotechnology, 95, 757-766. https://doi.org/10.1007/s00253-012-3932-4
|
[21]
|
Kim, S.J., Kweon, O., Jones, R.C., Freeman, J.P., Edmondson, R.D. and Cerniglia, C.E. (2007) Complete and Integrated Pyrene Degradation Pathway in Mycobacterium vanbaalenii PYR-1 Based on Systems Biology. Journal of Bacteriology, 189, 464-472. https://doi.org/10.1128/JB.01310-06
|
[22]
|
Fuchs, G., Boll, M. and Heider, J. (2011) Microbial Degradation of Aromatic Compounds—From One Strategy to Four. Nature. Reviews Microbiology, 9, 803-816. https://doi.org/10.1038/nrmicro2652
|
[23]
|
Ravindra, K., Sokhi, R. and Van Grieken, R. (2008) Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmospheric Environment, 42, 2895-2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
|
[24]
|
Johnsen, A.R., Wick, L.Y. and Harms, H. (2005) Principles of Microbial PAH-Degradation in Soil. Environmental Pollution, 133, 71-84. https://doi.org/10.1016/j.envpol.2004.04.015
|
[25]
|
Kanaly, R.A. and Harayama, S. (2000) Biodegradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons by Bacteria. Journal of Bacteriology, 182, 2059-2067. https://doi.org/10.1128/JB.182.8.2059-2067.2000
|
[26]
|
Zhang, J., Fan, S.K., Du, X.M., Yang, J.C., Wang, W.Y. and Hou, H. (2015) Accumulation, Allocation, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Brassica chinensis System. PLoS ONE, 10, e0115863. https://doi.org/10.1371/journal.pone.0115863
|
[27]
|
Decesaro, A., Machado, T.S., Cappellaro, Â.C., Reinehr, C.O., Thomé, A. and Colla, L.M. (2017) Biosurfactants During in Situ Bioremediation: Factors That Influence the Production and Challenges in Evolution. Environmental Science and Pollution Research, 24, 20831-20843. https://doi.org/10.1007/s11356-017-9778-7
|
[28]
|
Hajfarajollah, H., Eslami, P., Mokhtarani, B. and Akbari Noghabi, K. (2018) Biosurfactants from Probiotic Bacteria: A Review. Biotechnology and Applied Biochemistry, 65, 768-783. https://doi.org/10.1002/bab.1686
|
[29]
|
Noordman, W.H. and Janssen, D.B. (2002) Rhamnolipid Stimulates Uptake of Hydrophobic Compounds by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 68, 4502-4508. https://doi.org/10.1128/AEM.68.9.4502-4508.2002
|
[30]
|
Ma, Z., Liu, J., Dick, R.P., Li, H., Shen, D., Gao, Y., Waigi, M.G. and Ling, W. (2018) Rhamnolipid Influences Biosorption and Biodegradation of Phenanthrene by Phenanthrene-Degrading Strain Pseudomonas sp. Ph6. Environmental Pollution, 240, 359-367. https://doi.org/10.1016/j.envpol.2018.04.125
|
[31]
|
Sander, L.C. and Wise, S.A. (2011) Polycyclic Aromatic Hydrocarbon Structure Index. NIST Special Publication 922. National Institute of Standards and Technology, United Sates Department of Commerce Technology Administration, Gaithersburg, MD 20899-0001.
|
[32]
|
Collier, L.S., Nichols, N.N. and Neidle, E.L. (1997) Benk Encodes a Hydrophobic Permease-Like Protein Involved in Benzoate Degradation by Acinetobacter sp. Strain ADP1. Journal of Bacteriology, 179, 5943-5946. https://doi.org/10.1128/JB.179.18.5943-5946.1997
|
[33]
|
Clark, T.J., Momany, C. and Neidle, E.L. (2002) The benPK Operon, Proposed to Play a Role in Transport, Is Part of a Regulon for Benzoate Catabolism in Acinetobacter sp. Strain ADP1. Microbiology, 148, 1213-1223. https://doi.org/10.1099/00221287-148-4-1213
|
[34]
|
Xu, Y., Wang, S.H., Chao, H.J., Liu, S.J. and Zhou, N.Y. (2012) Biochemical and Molecular Characterization of the Gentisate Transporter Genk in Corynebacterium glutamicum. PLoS ONE, 7, e38701. https://doi.org/10.1371/journal.pone.0038701
|
[35]
|
Xu, Y., Gao, X., Wang, S.H., Liu, H., Williams, P.A. and Zhou, N.Y. (2012) MhbT Is a Specific Transporter for 3-Hydroxybenzoate Uptake by Gram-Negative Bacteria. Applied and Environmental Microbiology, 78, 6113-6120. https://doi.org/10.1128/AEM.01511-12
|
[36]
|
Nichols, N.N. and Harwood, C.S. (1997) Pcak, a High-Affinity Permease for the Aromatic Compounds 4-Hydroxybenzoate and Protocatechuate from Pseudomonas putida. Journal of Bacteriology, 179, 5056-5061. https://doi.org/10.1128/JB.179.16.5056-5061.1997
|
[37]
|
Pernstich, C., Senior, L., Macinnes, K.A., Forsaith, M. and Curnow, P. (2014) Expression, Purification and Reconstitution of the 4-Hydroxybenzoate Transporter PcaK from Acinetobacter sp. ADP1. Protein Expression and Purification, 101, 68-75. https://doi.org/10.1016/j.pep.2014.05.011
|
[38]
|
Chang, H.K. and Zylstra, G.J. (1999) Characterization of the Phthalate Permease OphD from Burkholderia cepacia ATCC 17616. Journal of Bacteriology, 181, 6197-6199. https://doi.org/10.1128/JB.181.19.6197-6199.1999
|
[39]
|
Chang, H.K., Dennis, J.J. and Zylstra, G.J. (2009) Involvement of Two Transport Systems and a Specific Porin in the Uptake of Phthalate by Burkholderia Spp. Journal of Bacteriology, 191, 4671-4673. https://doi.org/10.1128/JB.00377-09
|
[40]
|
Postma, P.W., Lengeler, J.W. and Jacobson, G.R. (1993) Phosphoenolpyruvate: Carbohydrate Phosphotransferase Systems of Bacteria. Microbiology and Molecular Biology Reviews, 57, 543-594. https://doi.org/10.1128/MMBR.57.3.543-594.1993
|
[41]
|
Deutscher, J., Francke, C. and Postma, P.W. (2006) How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria. Microbiology and Molecular Biology Reviews, 70, 939-1031. https://doi.org/10.1128/MMBR.00024-06
|
[42]
|
Kundig, W., Ghosh, S. and Roseman, S. (1964) Phosphate Bound to Histidine in a Protein as an Intermediate in a Novel Phospho-Transferase System. Proceedings of the National Academy of Sciences of the United States of America, 52, 1067-1074. https://doi.org/10.1073/pnas.52.4.1067
|
[43]
|
Saier Jr., M.H., Hvorup, R.N. and Barabote, R.D. (2005) Evolution of the Bacterial Phosphotransferase System: From Carriers and Enzymes to Group Translocators. Biochemical Society Transactions, 33, 220-224. https://doi.org/10.1042/BST0330220
|
[44]
|
Zhang, Z.G., Aboulwafa, M., Smith, M.H. and Saier Jr., M.H. (2003) The Ascorbate Transporter of Escherichia coli. Journal of Bacteriology, 185, 2243-2250. https://doi.org/10.1128/JB.185.7.2243-2250.2003
|
[45]
|
Hvorup, R., Chang, A.B. and Saier Jr., M.H. (2003) Bioinformatic Analyses of the Bacterial L-Ascorbate Phosphotransferase System Permease Family. Journal of Molecular Microbiology and Biotechnology, 6, 191-205. https://doi.org/10.1159/000077250
|
[46]
|
Nobelmann, B. and Lengeler, J.W. (1996) Molecular Analysis of the Gat Genes from Escherichia coli and of Their Roles in Galactitol Transport and Metabolism. Journal of Bacteriology, 178, 6790-6795. https://doi.org/10.1128/JB.178.23.6790-6795.1996
|
[47]
|
Wichelecki, D.J., Vetting, M.W., Chou, L., Al-Obaidi, N., Bouvier, J.T., Almo, S.C. and Gerlt, J.A. (2015) ATP-Binding Cassette (ABC) Transport System Solute-Binding Protein-Guided Identification of Novel D-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58. Journal of Biological Chemistry, 290, 28963-28976. https://doi.org/10.1074/jbc.M115.686857
|
[48]
|
Zúñiga, M., Comas, I., Linaje, R., Monedero, V., Yebra, M.J., Esteban, C.D., Deutscher, J., Pérez-Martínez, G. and González-Candelas, F. (2005) Horizontal Gene Transfer in the Molecular Evolution of Mannose PTS Transporters. Molecular Biology and Evolution, 22, 1673-1685. https://doi.org/10.1093/molbev/msi163
|
[49]
|
Kinch, L.N., Cheek, S. and Grishin, N.V. (2005) EDD, a Novel Phosphotransferase Domain Common to Mannose Transporter EIIA, Dihydroxyacetone Kinase, and Degv. Protein Science, 14, 360-367. https://doi.org/10.1110/ps.041114805
|
[50]
|
Milo, R., Jorgensen, P., Moran, U., Weber, G. and Springer, M. (2010) Bionumbers—The Database of Key Numbers in Molecular and Cell Biology. Nucleic Acids Research, 38, D750-D753. https://doi.org/10.1093/nar/gkp889
|
[51]
|
Huang, L.Y., Catterall, W.A. and Ehrenstein, G. (1978) Selectivity of Cations and Non Electrolytes for Acetylcholine-Activated Channels in Cultured Muscle Cells. Journal of General Physiology, 71, 397-410. https://doi.org/10.1085/jgp.71.4.397
|
[52]
|
Yan, S. and Wu, G. (2017) Reorganization of Gene Network for Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under Several Conditions. Journal Applied Genetics, 58, 545-563. https://doi.org/10.1007/s13353-017-0402-9
|
[53]
|
Fetzner, S. (2012) Ring-Cleaving Dioxygenases with a Cupin Fold. Applied and Environmental Microbiology, 78, 2505-2514. https://doi.org/10.1128/AEM.07651-11
|
[54]
|
Willumsen, P.A. and Karlson, U. (1998) Effect of Calcium on the Surfactant tolerance of a Fluoranthene Degrading Bacterium. Biodegradation, 9, 369-379. https://doi.org/10.1023/A:1008357904624
|
[55]
|
Rojo, F. (2010) Carbon Catabolite Repression in Pseudomonas: Optimizing Metabolic Versatility and Interactions with the Environment. FEMS Microbiology Reviews, 34, 658-684. https://doi.org/10.1111/j.1574-6976.2010.00218.x
|
[56]
|
Saier Jr., M.H. (2018) The Benzoate: H Symporter (Bene) Family. Transporter Classification Database. http://www.tcdb.org/
|
[57]
|
Law, C.J., Maloney, P.C. and Wang, D.N. (2008) Ins and Outs of Major Facilitator Superfamily Antiporters. Annual Review of Microbiology, 62, 289-305. https://doi.org/10.1146/annurev.micro.61.080706.093329
|
[58]
|
Saier Jr., M.H., Beatty, J.T., Goffeau, A., Harley, K.T., Heijne, W.H., Huang, S.C., Jack, D.L., Jähn, P.S., Lew, K., Liu, J., Pao, S.S., Paulsen, I.T., Tseng, T.T. and Virk, P.S. (1999) The Major Facilitator Superfamily. Journal of Molecular Microbiology and Biotechnology, 1, 257-279.
|
[59]
|
Henderson, P.J. and Maiden, M.C. (1990) Homologous Sugar Transport Proteins in Escherichia coli and Their Relatives in Both Prokaryotes and Eukaryotes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 326, 391-410. https://doi.org/10.1098/rstb.1990.0020
|
[60]
|
Dutta, D. and Fliegel, L. (2018) Structure and Function of Yeast and Fungal Na+/H+ Antiporters. IUBMB Life, 70, 23-31. https://doi.org/10.1002/iub.1701
|
[61]
|
Paulsen, I.T., Brown, M.H. and Skurray, R.A. (1996) Proton-Dependent Multidrug Efflux Systems. Microbiology Review, 60, 575-608. https://doi.org/10.1128/MMBR.60.4.575-608.1996
|
[62]
|
Pao, S.S., Paulsen, I.T. and Saier Jr., M.H. (1998) Major Facilitator Superfamily. Microbiology and Molecular Biology Reviews, 62, 1-34. https://doi.org/10.1128/MMBR.62.1.1-34.1998
|
[63]
|
Wolfersberger, M.G. (1994) Uniporters, Symporters and Antiporters. Journal of Experimental Biology, 196, 5-6.
|
[64]
|
Williams, P.A. and Shaw, L.E. (1997) mucK, a Gene in Acinetobacter calcoaceticus ADP1 (BD413), Encodes the Ability to Grow on Exogenous cis,cis-Muconate as the Sole Carbon Source. Journal of Bacteriology, 179, 5935-5942. https://doi.org/10.1128/JB.179.18.5935-5942.1997
|
[65]
|
Harwood, C.S. and Parales, R.E. (1996) The β-Ketoadipate Pathway and the Biology of Self-Identity. Annual Review of Microbiology, 50, 553-590. https://doi.org/10.1146/annurev.micro.50.1.553
|
[66]
|
Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S., Wincker, P., Ornston, L.N., Weissenbach, J., Marlière, P., Cohen, G.N. and Médigue, C. (2004) Unique Features Revealed by the Genome Sequence of Acinetobacter sp. ADP1, a Versatile and Naturally Transformation Competent Bacterium. Nucleic Acids Research, 32, 5766-5779. https://doi.org/10.1093/nar/gkh910
|
[67]
|
Cillingová, A., Zeman, I., Tóth, R., Neboháčová, M., Dunčková, I., Hölcová, M., Jakúbková, M., Gérecová, G., Pryszcz, L.P., Tomáška, Ľ., Gabaldón, T., Gácser, A. and Nosek, J. (2017) Eukaryotic Transporters for Hydroxyl Derivatives of Benzoic Acid. Scientific Reports, 7, Article No. 8998. https://doi.org/10.1038/s41598-017-09408-6
|
[68]
|
Middelhoven, W.J., Coenen, A., Kraakman, B. and Sollewijn Gelpke, M.D. (1992) Degradation of Some Phenols and Hydroxybenzoates by the Imperfect Ascomycetous Yeasts Candida parapsilosis and Arxula adeninivorans: Evidence for an Operative Gentisate Pathway. Antonie van Leeuwenhoek, 62, 181-187. https://doi.org/10.1007/BF00582578
|
[69]
|
Middelhoven, W.J. (1993) Catabolism of Benzene Compounds by Ascomycetous and Basidiomycetous Yeasts and Yeastlike Fungi. A Literature Review and an Experimental Approach. Antonie van Leeuwenhoek, 63, 125-144. https://doi.org/10.1007/BF00872388
|
[70]
|
Holesova, Z., Jakubkova, M., Zavadiakova, I., Zeman, I., Tomaska, L. and Nosek, J. (2011) Gentisate and 3-Oxoadipate Pathways in the Yeast Candida parapsilosis: Identification and Functional Analysis of the Genes Coding for 3-Hydroxybenzoate 6-Hydroxylase and 4-Hydroxybenzoate 1-Hydroxylase. Microbiology, 157, 2152-2163. https://doi.org/10.1099/mic.0.048215-0
|
[71]
|
Nichols, N.N. and Harwood, C.S. (1997) PcaK, a High-Affinity Permease for the Aromatic Compounds 4-Hydroxybenzoate and Protocatechuate from Pseudomonas putida. Journal of Bacteriology, 179, 5056-5061. https://doi.org/10.1128/jb.179.16.5056-5061.1997
|
[72]
|
Nomura, Y., Nakagawa, M., Ogawa, N., Harashima, S. and Oshima, Y. (1992) Genes in PHT Plasmid Encoding the Initial Degradation Pathway of Phthalate in Pseudomonas putida. Journal of Fermentation and Bioengineering, 74, 333-344. https://doi.org/10.1016/0922-338X(92)90028-S
|
[73]
|
Saint, C.P. and Romas, P. (1996) 4-Methylphthalate Catabolism in Burkholderia (Pseudomonas) cepacia Pc701: A Gene Encoding a Phthalate-Specific Permease forms Part of a Novel Gene Cluster. Microbiology, 142, 2407-2418. https://doi.org/10.1099/00221287-142-9-2407
|
[74]
|
Karimian, M. and Ornston, L.N. (1981) Participation of the β-Ketoadipate Transport System in Chemotaxis. Journal of General Microbiology, 124, 25-28. https://doi.org/10.1099/00221287-124-1-25
|
[75]
|
D’Arrigo, I., Cardoso, J.G.R., Rennig, M., Sonnenschein, N., Herrgård, M.J. and Long, K.S. (2019) Analysis of Pseudomonas putida Growth on Non-Trivial Carbon Sources Using Transcriptomics and Genome-Scale Modelling. Environmental Microbiology Reports, 11, 87-97. https://doi.org/10.1111/1758-2229.12704
|
[76]
|
Whipp, M.J., Camakaris, H. and Pittard, A.J. (1998) Cloning and Analysis of the Shia Gene, Which Encodes the Shikimate Transport System of Escherichia coli K-12. Gene, 209, 185-192. https://doi.org/10.1016/S0378-1119(98)00043-2
|
[77]
|
Büchel, D.E., Gronenborn, B. and Müller-Hill, B. (1980) Sequence of the Lactose Permease Gene. Nature, 283, 541-545. https://doi.org/10.1038/283541a0
|
[78]
|
Mcmorrow, I., Chin, D.T., Fiebig, K., Pierce, J.L., Wilson, D.M., Reeve, E.C. and Wilson, T.H. (1988) the Lactose Carrier of Klebsiella pneumoniae M5a1; the Physiology of Transport and the Nucleotide Sequence of the Lacy Gene. Biochimica et Biophysica Acta, 945, 315-323. https://doi.org/10.1016/0005-2736(88)90494-4
|
[79]
|
Lee, J.I., Okazakim N., Tsuchiya, T. and Wilson, T.H. (1994) Cloning and Sequencing of the Gene for the Lactose Carrier of Citrobacter freundii. Biochemical and Biophysical Research Communications, 203, 1882-1888. https://doi.org/10.1006/bbrc.1994.2407
|
[80]
|
Varela, M.F. and Wilson, T.H. (1996) Molecular Biology of the Lactose Carrier of Escherichia coli. Biochimica et Biophysica Acta, 1276, 21-34. https://doi.org/10.1016/0005-2728(96)00030-8
|
[81]
|
Abramson, J., Iwata, S. and Kaback, H. R. (2004) Lactose Permease as a Paradigm for Membrane Transport Proteins. Molecular Membrane Biology, 21, 227-236. https://doi.org/10.1080/09687680410001716862
|
[82]
|
Bockmann, J., Heuel, H. and Lengeler, J.W. (1992) Characterization of a Chromosomally Encoded, Non-PTS Metabolic Pathway for Sucrose Utilization in Escherichia coli EC3132. Molecular Genetics and Genomics, 235, 22-32. https://doi.org/10.1007/BF00286177
|
[83]
|
Sahin-Tóth, M., Frillingos, S., Lengeler, J.W. and Kaback, H.R. (1995) Active Transport by the Cscbpermease in Escherichia coli K-12. Biochemical and Biophysical Research Communications, 208, 1116-1123. https://doi.org/10.1006/bbrc.1995.1449
|
[84]
|
Peng, Y., Kumar, S., Hernandez, R.L., Jones, S.E., Cadle, K.M., Smith, K.P. and Varela, M.F. (2009) Evidence for the Transport of Maltose by the Sucrose Permease, CscB, of Escherichia coli. Journal of Membrane Biology, 228, 79-88. https://doi.org/10.1007/s00232-009-9161-9
|
[85]
|
Okazaki, N., Jue, X.X., Miyake, H., Kuroda, M., Shimamoto, T. and Tsuchiya, T. (1997) A Melibiose Transporter and an Operon Containing Its Gene in Enterobacter cloacae. Journal of Bacteriology, 179, 4443-4445. https://doi.org/10.1128/JB.179.13.4443-4445.1997
|
[86]
|
Yazyu, H., Shiota-Niiya, S., Shimamoto, T., Kanazawa, H., Futai, M. and Tsuchiya, T. (1984) Nucleotide Sequence of the MelB Gene and Characteristics of Deduced Amino Acid Sequence of the Melibiose Carrier in Escherichia coli. Journal of Biological Chemistry, 259, 4320-4326.
|
[87]
|
Botfield, M.C., Naguchi, K., Tsuchiya, T. and Wilson, T.H. (1992) Membrane Topology of the Melibiose Carrier of Escherichia coli. Journal of Biological Chemistry, 267, 1818-1822.
|
[88]
|
Mus-Veteau, I. and Leblanc, G. (1996) Melibiose Permease of Escherichia coli: Structural Organization of Cosubstrate Binding Sites as Deduced from Tryptophan Fluorescence Analyses. Biochemistry, 35, 12053-12060. https://doi.org/10.1021/bi961372g
|
[89]
|
Ethayathulla, A.S., Yousef, M.S., Amin, A., Leblanc, G., Kaback, H.R. and Guan, L. (2014) Structure-Based Mechanism for Na+/Melibiose Symport by MelB. Nature Communications, 5, Article No. 3009. https://doi.org/10.1038/ncomms4009
|
[90]
|
Kaback, H.R. (1997) A Molecular Mechanism for Energy Coupling in a Membrane Transport Protein, the Lactose Permease of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 94, 5539-5543. https://doi.org/10.1073/pnas.94.11.5539
|
[91]
|
Kaback, H.R., Sahin-Tóth, M. and Weinglass, A.B. (2001) The Kamikaze Approach to Membrane Transport. Nature Reviews Molecular Cell Biology, 2, 610-620. https://doi.org/10.1038/35085077
|
[92]
|
Weinglass, A.B., Sondej, M. and Kaback, H.R. (2002) Manipulating Conformational Equilibria in the Lactose Permease of Escherichia coli. Journal of Molecular Biology, 315, 561-571.
|
[93]
|
Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H.R. and Iwata, S. (2003) Structure and Mechanism of the Lactose Permease of Escherichia coli. Science, 301, 610-615. https://doi.org/10.1126/science.1088196
|
[94]
|
Neidle, E.L., Hartnett, C., Ornston, L.N., Bairoch, A., Rekik, M. and Harayama, S. (1991) Nucleotide Sequences of the Acinetobacter calcoaceticus Benabc Genes for Benzoate 1,2-Dioxygenase Reveal Evolutionary Relationships among Multicomponent Oxygenases. Journal of Bacteriology, 173, 5385-5395. https://doi.org/10.1128/JB.173.17.5385-5395.1991
|
[95]
|
Mörtberg, M. and Neujahr, H.Y. (1985) Uptake of Phenol by Trichosporon Cutaneum. Journal of Bacteriology, 161, 615-619.
|
[96]
|
Mörtberg, M., Spånning, A. and Neujahr, H.Y. (1988) Induction of High-Affinity Phenol Uptake in Glycerol-Grown Trichosporon cutaneum. Journal of Bacteriology, 170, 2383-2384. https://doi.org/10.1128/JB.170.5.2383-2384.1988
|
[97]
|
Shimizu, M., Kobayashi, Y., Tanaka, H. and Wariishi, H. (2005) Transportation Mechanism for Vanillin Uptake through Fungal Plasma Membrane. Applied Microbiology and Biotechnology, 68, 673-679. https://doi.org/10.1007/s00253-005-1933-2
|
[98]
|
Gopal, E., Miyauchi, S., Martin, P.M., Ananth, S., Roon, P., Smith, S.B. and Ganapathy, V. (2007) Transport of Nicotinate and Structurally Related Compounds by Human SMCT1 (SLC5A8) and Its Relevance to Drug Transport in the Mammalian Intestinal Tract. Pharmaceutical Research, 24, 575-584. https://doi.org/10.1007/s11095-006-9176-1
|
[99]
|
Titgemeyer, F., Mason, R.E. and Saier Jr., M.H. (1994) Regulation of the Raffinose Permease of Escherichia coli by the Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate: Sugar Phosphotransferase System. Journal of Bacteriology, 176, 543-546. https://doi.org/10.1128/JB.176.2.543-546.1994
|
[100]
|
Schmid, K. and Schmitt, R. (1976) Raffinose Metabolism in Escherichia coli K12. Purification and Properties of a New α-Galactosidase Specified by a Transmissible Plasmid. European Journal of Biochemistry, 67, 95-104. https://doi.org/10.1111/j.1432-1033.1976.tb10637.x
|
[101]
|
Aslanidis, C., Schmid, K. and Schmitt, R. (1989) Nucleotide Sequences and Operon Structure of Plasmid-Borne Genes Mediating Uptake and Utilization of Raffinose in Escherichia coli. Journal of Bacteriology, 171, 6753-6763. https://doi.org/10.1128/JB.171.12.6753-6763.1989
|
[102]
|
Van Camp, B.M., Crow, R.R., Peng, Y. and Varela, M.F. (2007) Amino Acids That Confer Transport of Raffinose and Maltose Sugars in the Raffinose Permease (RafB) of Escherichia coli as Implicated by Spontaneous Mutations at Val-35, Ser-138, Ser-139, Gly-389 and Ile-391. Journal of Membrane Biology, 220, 87-95. https://doi.org/10.1007/s00232-007-9077-1
|
[103]
|
Misko, T.P., Mitchell, W.J., Meadow, N.D. and Roseman, S. (1987) Sugar Transport by the Bacterial Phosphotransferase System. Reconstitution of Inducer Exclusion in Salmonella Typhimurium Membrane Vesicles. Journal of Biological Chemistry, 262, 16261-16266.
|
[104]
|
Henderson, P.J.F., Giddens, R.A. and Jones-Mortimer, M.C. (1977) The Transport of Galactose, Glucose and their Molecular Analogues by Escherichia coli K12. Biochemical Journal, 162, 309-320. https://doi.org/10.1042/bj1620309
|
[105]
|
Mcdonald, T.P., Walmsley, A.R. and Henderson, P.J.F. (1997) Asparagine 394 in Putative Helix 11 of the Galactose-H+Symport Protein (Galp) from Escherichia Coli Is Associated with the internal Binding Site for Cytochalasin B and Sugar. Journal of Biological Chemistry, 272, 15189-15199. https://doi.org/10.1074/jbc.272.24.15189
|
[106]
|
Mcdonald, T.P. and Henderson, P.J.F. (2001) Cysteine Residues in the D-Galactose-H+ Symport Protein of Escherichia coli: Effects of Mutagenesis on Transport, Reaction with N-Ethylmaleimide and Antibiotic Binding. Biochemical Journal, 353, 709-717. https://doi.org/10.1042/bj3530709
|
[107]
|
Zheng, H., Taraska, J., Merz, A.J. and Gonen, T. (2010) The Prototypical H+/Galactose Symporter Galp Assembles into Functional Trimers. Journal of Molecular Biology, 396, 593-601. https://doi.org/10.1016/j.jmb.2009.12.010
|
[108]
|
Behera, B.K., Das, A., Sarkar, D.J., Weerathunge, P., Parida, P.K., Das, B.K., Thavamani, P., Ramanathan, R. and Bansal, V. (2018) Polycyclic Aromatic Hydrocarbons (PAHs) in Inland Aquatic Ecosystems: Perils and Remedies through Biosensors and Bioremediation. Environmental Pollution, 241, 212-233. https://doi.org/10.1016/j.envpol.2018.05.016
|
[109]
|
Rizzuto, R., Pinton, P., Brini, M., Chiesa, A., Filippin, L. and Pozzan, T. (1999) Mitochondria as Biosensors of Calcium Microdomains. Cell Calcium, 26, 193-199. https://doi.org/10.1054/ceca.1999.0076
|
[110]
|
Li, X., Kaattari, S.L., Vogelbein, M.A., Vadas, G.G. and Unger, M.A. (2016) A Highly Sensitive Monoclonal Antibody Based Biosensor for Quantifying 3-5 Ring Polycyclic Aromatic Hydrocarbons (PAHs) in Aqueous Environmental Samples. Sensing and Bio-Sensing Research, 7, 115-120. https://doi.org/10.1016/j.sbsr.2016.02.003
|
[111]
|
Denome, S.A., Stanley, D.C., Olson, E.S. and Young, K.D. (1993) Metabolism of Dibenzothiophene and Naphthalene in Pseudomonas Strains: Complete DNA Sequence of an Upper Naphthalene Catabolic Pathway. Journal of Bacteriology, 175, 6890-6901. https://doi.org/10.1128/JB.175.21.6890-6901.1993
|
[112]
|
Baboshin, M., Akimov, V., Baskunov, B., Born, T.L., Khan, S.U. and Golovleva, L. (2008) Conversion of Polycyclic Aromatic Hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation, 19, 567-576. https://doi.org/10.1007/s10532-007-9162-2
|
[113]
|
Wattiau, P., Bastiaens, L., Van Herwijnen, R., Daal, L., Parsons, J.R., Renard, M.E., Springael, D. and Cornelis, G.R. (2001) Fluorene Degradation by Sphingomonas sp. LB126 Proceeds through Protocatechuic Acid: A Genetic Analysis. Research in Microbiology, 152, 861-872. https://doi.org/10.1016/S0923-2508(01)01269-4
|
[114]
|
Jouanneau, Y., Meyer, C., Jakoncic, J., Stojanoff, V. and Gaillard, J. (2006) Characterization of a Naphthalene Dioxygenase Endowed with an Exceptionally Broad Substrate Specificity toward Polycyclic Aromatic Hydrocarbons. Biochemistry, 45, 12380-12391. https://doi.org/10.1021/bi0611311
|
[115]
|
Choudhary, A., Modak, A., Apte, S.K. and Phale, P.S. (2017) Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86. Applied and Environmental Microbiology, 83, e01280-17. https://doi.org/10.1128/AEM.01280-17
|