[1]
|
Chou, K.C. (2019) Progresses in Predicting Post-Translational Modification. International Journal of Peptide Research and Therapeutics (IJPRT). https://doi.org/10.1007/s10989-019-09893-5
|
[2]
|
Chou, K.C. (2019) Advance in Predicting Subcellular Localization of Multi-Label Proteins and Its Implication for Developing Multi-Target Drugs. Current Medicinal Chemistry.
https://doi.org/10.2174/0929867326666190507082559
|
[3]
|
Chou, K.C. (2011) Some Remarks on Protein Attribute Prediction and Pseudo Amino Acid Composition (50th Anniversary Year Review, 5-Steps Rule). Journal of Theoretical Biology, 273, 236-247.
https://doi.org/10.1016/j.jtbi.2010.12.024
|
[4]
|
Chen, W., Feng, P.M., Lin, H. and Chou, K.C. (2013) iRSpot-PseDNC: Identify Recombination Spots with Pseudo Dinucleotide Composition. Nucleic Acids Research, 41, e68. https://doi.org/10.1093/nar/gks1450
|
[5]
|
Feng, P.M., Chen, W., Lin, H. and Chou, K.C. (2013) iHSP-PseRAAAC: Identifying the Heat Shock Protein Families Using Pseudo Reduced Amino Acid Alphabet Composition. Analytical Biochemistry, 442, 118-125.
https://doi.org/10.1016/j.ab.2013.05.024
|
[6]
|
Lin, H., Deng, E.Z., Ding, H., Chen, W. and Chou, K.C. (2014) iPro54-PseKNC: A Sequence-Based Predictor for Identifying Sigma-54 Promoters in Prokaryote with Pseudo k-Tuple Nucleotide Composition. Nucleic Acids Research, 42, 12961-12972. https://doi.org/10.1093/nar/gku1019
|
[7]
|
Chen, W., Feng, P.M., Deng, E.Z., Lin, H. and Chou, K.C. (2014) iTIS-PseTNC: A Sequence-Based Predictor for Identifying Translation Initiation Site in Human Genes Using Pseudo Trinucleotide Composition. Analytical Biochemistry, 462, 76-83. https://doi.org/10.1016/j.ab.2014.06.022
|
[8]
|
Ding, H., Deng, E.Z., Yuan, L.F., Liu, L., Lin, H., Chen, W. and Chou, K.C. (2014) iCTX-Type: A Sequence-Based Predictor for Identifying the Types of Conotoxins in Targeting Ion Channels. BioMed Research International, 2014, Article ID: 286419. https://doi.org/10.1155/2014/286419
|
[9]
|
Liu, B., Fang, L., Wang, S., Wang, X., Li, H. and Chou, K.C. (2015) Identification of microRNA Precursor with the Degenerate K-Tuple or Kmer Strategy. Journal of Theoretical Biology, 385, 153-159.
https://doi.org/10.1016/j.jtbi.2015.08.025
|
[10]
|
Liu, Z., Xiao, X., Qiu, W.R. and Chou, K.C. (2015) iDNA-methyl: Identifying DNA Methylation Sites via Pseudo Trinucleotide Composition. Analytical Biochemistry, 474, 69-77. https://doi.org/10.1016/j.ab.2014.12.009
|
[11]
|
Xiao, X., Min, J.L., Lin, W.Z., Liu, Z., Cheng, X. and Chou, K.C. (2015) iDrug-Target: Predicting the Interactions between Drug Compounds and Target Proteins in Cellular Networking via the Benchmark Dataset Optimization Approach. Journal of Biomolecular Structure and Dynamics, 33, 2221-2233.
https://doi.org/10.1080/07391102.2014.998710
|
[12]
|
Jia, J., Liu, Z., Xiao, X., Liu, B. and Chou, K.C. (2016) iSuc-PseOpt: Identifying Lysine Succinylation Sites in Proteins by Incorporating Sequence-Coupling Effects into Pseudo Components and Optimizing Imbalanced Training Dataset. Analytical Biochemistry, 497, 48-56. https://doi.org/10.1016/j.ab.2015.12.009
|
[13]
|
Jia, J., Zhang, L., Liu, Z., Xiao, X. and Chou, K.C. (2016) pSumo-CD: Predicting Sumoylation Sites in Proteins with Covariance Discriminant Algorithm by Incorporating Sequence-Coupled Effects into General PseAAC. Bioinformatics, 32, 3133-3141. https://doi.org/10.1093/bioinformatics/btw387
|
[14]
|
Liu, B., Fang, L., Long, R., Lan, X. and Chou, K.C. (2016) iEnhancer-2L: A Two-Layer Predictor for Identifying Enhancers and Their Strength by Pseudo k-Tuple Nucleotide Composition. Bioinformatics, 32, 362-369.
https://doi.org/10.1093/bioinformatics/btv604
|
[15]
|
Chen, W., Feng, P., Yang, H., Ding, H., Lin, H. and Chou, K.C. (2017) iRNA-AI: Identifying the Adenosine to Inosine Editing Sites in RNA Sequences. Oncotarget, 8, 4208-4217. https://doi.org/10.18632/oncotarget.13758
|
[16]
|
Chen, W., Ding, H., Zhou, X., Lin, H. and Chou, K.C. (2018) iRNA(m6A)-PseDNC: Identifying N6-Methyladenosine Sites Using Pseudo Dinucleotide Composition. Analytical Biochemistry, 561-562, 59-65.
https://doi.org/10.1016/j.ab.2018.09.002
|
[17]
|
Chen, W., Feng, P., Yang, H., Ding, H., Lin, H. and Chou, K.C. (2018) iRNA-3typeA: Identifying 3-Types of Modification at RNA’s Adenosine Sites. Molecular Therapy, 11, 468-474.
https://doi.org/10.1016/j.omtn.2018.03.012
|
[18]
|
Qiu, W.R., Sun, B.Q., Xiao, X., Xu, Z.C., Jia, J.H. and Chou, K.C. (2018) iKcr-PseEns: Identify Lysine Crotonylation Sites in Histone Proteins with Pseudo Components and Ensemble Classifier. Genomics, 110, 239-246.
https://doi.org/10.1016/j.ygeno.2017.10.008
|
[19]
|
Feng, P., Yang, H., Ding, H., Lin, H., Chen, W. and Chou, K.C. (2019) iDNA6mA-PseKNC: Identifying DNA N(6)-Methyladenosine Sites by Incorporating Nucleotide Physicochemical Properties into PseKNC. Genomics, 111, 96-102. https://doi.org/10.1016/j.ygeno.2018.01.005
|
[20]
|
Hussain, W., Khan, S.D., Rasool, N., Khan, S.A. and Chou, K.C. (2019) SPalmitoylC-PseAAC: A Sequence-Based Model Developed via Chou’s 5-Steps Rule and General PseAAC for Identifying S-palmitoylation Sites in Proteins. Analytical Biochemistry, 568, 14-23. https://doi.org/10.1016/j.ab.2018.12.019
|
[21]
|
Hussain, W., Khan, Y.D., Rasool, N., Khan, S.A. and Chou, K.C. (2019) SPrenylC-PseAAC: A Sequence-Based Model Developed via Chou’s 5-Steps Rule and General PseAAC for Identifying S-Prenylation Sites in Proteins. Journal of Theoretical Biology, 468, 1-11. https://doi.org/10.1016/j.jtbi.2019.02.007
|
[22]
|
Jia, J., Li, X., Qiu, W., Xiao, X. and Chou, K.C. (2019) iPPI-PseAAC(CGR): Identify Protein-Protein Interactions by Incorporating Chaos Game Representation into PseAAC. Journal of Theoretical Biology, 460, 195-203.
https://doi.org/10.1016/j.jtbi.2018.10.021
|
[23]
|
Khan, Y.D., Jamil, M., Hussain, W., Rasool, N., Khan, S.A. and Chou, K.C. (2019) pSS-bond-PseAAC: Prediction of Disulfide Bonding Sites by Integration of PseAAC and Statistical Moments. Journal of Theoretical Biology, 463, 47-55. https://doi.org/10.1016/j.jtbi.2018.12.015
|
[24]
|
Lu, Y., Wang, S., Wang, J., Zhou, G., Zhang, Q., Zhou, X., Niu, B., Chen, Q. and Chou, K.C. (2019) An Epidemic Avian Influenza Prediction Model Based on Google Trends. Letters in Organic Chemistry, 16, 303-310.
https://doi.org/10.2174/1570178615666180724103325
|
[25]
|
Khan, Y.D., Batool, A., Rasool, N., Khan, A. and Chou, K.C. (2019) Prediction of Nitrosocysteine Sites Using Position and Composition Variant Features. Letters in Organic Chemistry, 16, 283-293.
https://doi.org/10.2174/1570178615666180802122953
|
[26]
|
Cheng, X., Xiao, X. and Chou, K.C. (2018) pLoc_bal-mPlant: Predict Subcellular Localization of Plant Proteins by General PseAAC and Balancing Training Dataset. Current Pharmaceutical Design, 24, 4013-4022.
https://doi.org/10.2174/1381612824666181119145030
|
[27]
|
Li, J.X., Wang, S.Q., Du, Q.S., Wei, H., Li, X.M., Meng, J.Z., Wang, Q.Y., Xie, N.Z., Huang, R.B. and Chou, K.C. (2018) Simulated Protein Thermal Detection (SPTD) for Enzyme Thermostability Study and an Application Example for Pullulanase from Bacillus deramificans. Current Pharmaceutical Design, 24, 4023-4033.
https://doi.org/10.2174/1381612824666181113120948
|
[28]
|
Ghauri, A.W., Khan, Y.D., Rasool, N., Khan, S.A. and Chou, K.C. (2018) pNitro-Tyr-PseAAC: Predict Nitrotyrosine Sites in Proteins by Incorporating Five Features into Chou’s General PseAAC. Current Pharmaceutical Design, 24, 4034-4043. https://doi.org/10.2174/1381612825666181127101039
|
[29]
|
Xiao, X., Cheng, X., Chen, G., Mao, Q. and Chou, K.C. (2019) pLoc_bal-mGpos: Predict Subcellular Localization of Gram-Positive Bacterial Proteins by Quasi-Balancing Training Dataset and PseAAC. Genomics, 111, 886-892. https://doi.org/10.1016/j.ygeno.2018.05.017
|
[30]
|
Zhang, M., Li, F., Marquez-Lago, T.T., Leier, A., Fan, C., Kwoh, C.K., Chou, K.C., Song, J. and Jia, C. (2019) MULTiPly: A Novel Multi-Layer Predictor for Discovering General and Specific Types of Promoters. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz016
|
[31]
|
Chen, Z., Zhao, P., Li, F., Marquez-Lago, T.T., Leier, A., Revote, J., Zhu, Y., Powell, D.R., Akutsu, T., Webb, G.I., Chou, K.C., Smith, A.I., Daly, R.J., Li, J. and Song, J. (2019) iLearn: An Integrated Platform and Meta-Learner for Eature Engineering, Machine-Learning Analysis and Modeling of DNA, RNA and Protein Sequence Data, Brief. Bioinform. https://doi.org/10.1093/bib/bbz041
|
[32]
|
Zhang, Y., Xie, R., Wang, J., Leier, A., Marquez-Lago, T.T., Akutsu, T., Webb, G.I., Chou, K.C. and Song, J. (2018) Computational Analysis and Prediction of Lysine Malonylation Sites by Exploiting Informative Features in an Integrative Machine-Learning Framework, Brief. Bioinform. https://doi.org/10.1093/bib/bby079
|
[33]
|
Song, J., Wang, Y., Li, F., Akutsu, T., Rawlings, N.D., Webb, G.I. and Chou, K.C. (2018) iProt-Sub: A Comprehensive Package for Accurately Mapping and Predicting Protease-Specific Substrates and Cleavage Sites, Brief. Bioinform, 20, 638-658. https://doi.org/10.1093/bib/bby028
|
[34]
|
Song, J., Li, F., Takemoto, K., Haffari, G., Akutsu, T., Chou, K.C. and Webb, G.I. (2018) PREvaIL, an Integrative Approach for Inferring Catalytic Residues Using Sequence, Structural and Network Features in a Machine Learning Framework. Journal of Theoretical Biology, 443, 125-137. https://doi.org/10.1016/j.jtbi.2018.01.023
|
[35]
|
Li, F., Wang, Y., Li, C., Marquez-Lago, T.T., Leier, A., Rawlings, N.D., Haffari, G., Revote, J., Akutsu, T., Chou, K.C., Purcell, A.W., Pike, R.N., Webb, G.I., Ian Smith, A., Lithgow, T., Daly, R.J., Whisstock, J.C. and Song, J. (2018) Twenty Years of Bioinformatics, Research for Protease-Specific Substrate and Cleavage Site Prediction: A Comprehensive Revisit and Benchmarking of Existing Methods, Brief. Bioinform.
https://doi.org/10.1093/bib/bby077
|
[36]
|
Li, F., Li, C., Marquez-Lago, T.T., Leier, A., Akutsu, T., Purcell, A.W., Smith, A.I., Lightow, T., Daly, R.J., Song, J. and Chou, K.C. (2018) Quokka: A Comprehensive Tool for Rapid and Accurate Prediction of Kinase Family-Specific Phosphorylation Sites in the Human Proteome. Bioinformatics, 34, 4223-4231.
https://doi.org/10.1093/bioinformatics/bty522
|
[37]
|
Chou, K.C. and Shen, H.B. (2008) Cell-PLoc: A Package of Web Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Nature Protocols, 3, 153-162. https://doi.org/10.1038/nprot.2007.494
|
[38]
|
Chou, K.C. and Shen, H.B. (2010) Cell-PLoc 2.0: An Improved Package of Web-Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Natural Sciences, 2, 1090-1103.
https://doi.org/10.4236/ns.2010.210136
|
[39]
|
Zhai, X., Chen, M. and Lu, W. (2018) Accelerated Search for Perovskite Materials with Higher Curie Temperature Based on the Machine Learning Methods. Computational Materials Science, 151, 41-48.
https://doi.org/10.1016/j.commatsci.2018.04.031
|
[40]
|
Chou, K.C. and Shen, H.B. (2007) Recent Progresses in Protein Subcellular Location Prediction. Analytical Biochemistry, 370, 1-16. https://doi.org/10.1016/j.ab.2007.07.006
|
[41]
|
Shen, H.B. and Chou, K.C. (2009) A Top-Down Approach to Enhance the Power of Predicting Human Protein Subcellular Localization: Hum-mPLoc 2.0. Analytical Biochemistry, 394, 269-274.
https://doi.org/10.1016/j.ab.2009.07.046
|
[42]
|
Shen, H.B. and Chou, K.C. (2009) Gpos-mPLoc: A Top-Down Approach to Improve the Quality of Predicting Subcellular Localization of Gram-Positive Bacterial Proteins. Protein & Peptide Letters, 16, 1478-1484.
https://doi.org/10.2174/092986609789839322
|
[43]
|
Chou, K.C. and Shen, H.B. (2010) A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0. PLoS ONE, 5, e9931.
https://doi.org/10.1371/journal.pone.0009931
|
[44]
|
Chou, K.C. and Shen, H.B. (2010) Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS ONE, 5, e11335. https://doi.org/10.1371/journal.pone.0011335
|
[45]
|
Shen, H.B. and Chou, K.C. (2010) Gneg-mPLoc: A Top-Down Strategy to Enhance the Quality of Predicting Subcellular Localization of Gram-Negative Bacterial Proteins. Journal of Theoretical Biology, 264, 326-333.
https://doi.org/10.1016/j.jtbi.2010.01.018
|
[46]
|
Shen, H.B. and Chou, K.C. (2010) Virus-mPLoc: A Fusion Classifier for Viral Protein Subcellular Location Prediction by Incorporating Multiple Sites. Journal of Biomolecular Structure and Dynamics, 28, 175-186.
https://doi.org/10.1080/07391102.2010.10507351
|
[47]
|
Chou, K.C. (2001) Prediction of Protein Cellular Attributes Using Pseudo Amino Acid Composition. Proteins, 43, 246-255. (Erratum: ibid., 2001, Vol. 44, 60) https://doi.org/10.1002/prot.1035
|
[48]
|
Chou, K.C. (2005) Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Subfamily Classes. Bioinformatics, 21, 10-19. https://doi.org/10.1093/bioinformatics/bth466
|
[49]
|
Chou, K.C., Wu, Z.C. and Xiao, X. (2011) iLoc-Euk: A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins. PLoS ONE, 6, e18258.
https://doi.org/10.1371/journal.pone.0018258
|
[50]
|
Wu, Z.C., Xiao, X. and Chou, K.C. (2011) iLoc-Plant: A Multi-Label Classifier for Predicting the Subcellular Localization of Plant Proteins with Both Single and Multiple Sites. Molecular BioSystems, 7, 3287-3297.
https://doi.org/10.1039/c1mb05232b
|
[51]
|
Xiao, X., Wu, Z.C. and Chou, K.C. (2011) iLoc-Virus: A Multi-Label Learning Classifier for Identifying the Subcellular Localization of Virus Proteins with Both Single and Multiple Sites. Journal of Theoretical Biology, 284, 42-51. https://doi.org/10.1016/j.jtbi.2011.06.005
|
[52]
|
Chou, K.C., Wu, Z.C. and Xiao, X. (2012) iLoc-Hum: Using Accumulation-Label Scale to Predict Subcellular Locations of Human Proteins with Both Single and Multiple Sites. Molecular BioSystems, 8, 629-641.
https://doi.org/10.1039/C1MB05420A
|
[53]
|
Xiao, X., Wu, Z.C. and Chou, K.C. (2011) A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites. PLoS ONE, 6, e20592.
https://doi.org/10.1371/journal.pone.0020592
|
[54]
|
Wu, Z.C., Xiao, X. and Chou, K.C. (2012) iLoc-Gpos: A Multi-Layer Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Gram-Positive Bacterial Proteins. Protein & Peptide Letters, 19, 4-14.
https://doi.org/10.2174/092986612798472839
|
[55]
|
Lin, W.Z., Fang, J.A., Xiao, X. and Chou, K.C. (2013) iLoc-Animal: A Multi-Label Learning Classifier for Predicting Subcellular Localization of Animal Proteins. Molecular BioSystems, 9, 634-644.
https://doi.org/10.1039/c3mb25466f
|
[56]
|
Cheng, X., Xiao, X. and Chou, K.C. (2017) pLoc-mPlant: Predict Subcellular Localization of Multi-Location Plant Proteins via Incorporating the Optimal GO Information into General PseAAC. Molecular BioSystems, 13, 1722-1727. https://doi.org/10.1039/C7MB00267J
|
[57]
|
Cheng, X., Xiao, X. and Chou, K.C. (2017) pLoc-mVirus: Predict Subcellular Localization of Multi-Location Virus Proteins via Incorporating the Optimal GO Information into General PseAAC. Gene, 628, 315-321. (Erratum: ibid., 2018, Vol. 644, 156-156) https://doi.org/10.1016/j.gene.2017.10.042
|
[58]
|
Cheng, X., Zhao, S.G., Lin, W.Z., Xiao, X. and Chou, K.C. (2017) pLoc-mAnimal: Predict Subcellular Localization of Animal Proteins with Both Single and Multiple Sites. Bioinformatics, 33, 3524-3531.
https://doi.org/10.1093/bioinformatics/btx476
|
[59]
|
Xiao, X., Cheng, X., Su, S., Nao, Q. and Chou, K.C. (2017) pLoc-mGpos: Incorporate Key Gene Ontology Information into General PseAAC for Predicting Subcellular Localization of Gram-Positive Bacterial Proteins. Natural Sciences, 9, 331-349. https://doi.org/10.4236/ns.2017.99032
|
[60]
|
Cheng, X., Xiao, X. and Chou, K.C. (2017) pLoc-mEuk: Predict Subcellular Localization of Multi-Label Eukaryotic Proteins by Extracting the Key GO Information into General PseAAC. Genomics, 110, 50-58.
https://doi.org/10.1016/j.ygeno.2017.08.005
|
[61]
|
Cheng, X., Xiao, X. and Chou, K.C. (2018) pLoc-mGneg: Predict Subcellular Localization of Gram-Negative Bacterial Proteins by Deep Gene Ontology Learning via General PseAAC. Genomics, 110, 231-239.
https://doi.org/10.1016/j.ygeno.2017.10.002
|
[62]
|
Cheng, X., Xiao, X. and Chou, K.C. (2018) pLoc-mHum: Predict Subcellular Localization of Multi-Location Human Proteins via General PseAAC to Winnow out the Crucial GO Information. Bioinformatics, 34, 1448-1456. https://doi.org/10.1093/bioinformatics/btx711
|
[63]
|
Cheng, X., Xiao, X. and Chou, K.C. (2018) pLoc_bal-mGneg: Predict Subcellular Localization of Gram-Negative Bacterial Proteins by Quasi-Balancing Training Dataset and General PseAAC. Journal of Theoretical Biology, 458, 92-102. https://doi.org/10.1016/j.jtbi.2018.09.005
|
[64]
|
Chou, K.C., Cheng, X. and Xiao, X. (2018) pLoc_bal-mHum: Predict Subcellular Localization of Human Proteins by PseAAC and Quasi-Balancing Training Dataset. Genomics. https://doi.org/10.1016/j.ygeno.2018.08.007
|
[65]
|
Cheng, X., Lin, W.Z., Xiao, X. and Chou, K.C. (2019) pLoc_bal-mAnimal: Predict Subcellular Localization of Animal Proteins by Balancing Training Dataset and PseAAC. Bioinformatics, 35, 398-406.
https://doi.org/10.1093/bioinformatics/bty628
|
[66]
|
Chou, K.C. (2013) Some Remarks on Predicting Multi-Label Attributes in Molecular Biosystems. Molecular BioSystems, 9, 1092-1100. https://doi.org/10.1039/c3mb25555g
|
[67]
|
Chou, K.C. and Elrod, D.W. (2002) Bioinformatical Analysis of G-Protein-Coupled Receptors. Journal of Proteome Research, 1, 429-433. https://doi.org/10.1021/pr025527k
|
[68]
|
Chen, W., Lin, H., Feng, P.M., Ding, C., Zuo, Y.C. and Chou, K.C. (2012) iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties. PLoS ONE, 7, e47843.
https://doi.org/10.1371/journal.pone.0047843
|
[69]
|
Xu, Y., Ding, J., Wu, L.Y. and Chou, K.C. (2013) iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition. PLoS ONE, 8, e55844. https://doi.org/10.1371/journal.pone.0055844
|
[70]
|
Cai, Y.D. and Chou, K.C. (2004) Predicting Subcellular Localization of Proteins in a Hybridization Space. Bioinformatics, 20, 1151-1156. https://doi.org/10.1093/bioinformatics/bth054
|
[71]
|
Chou, K.C. and Cai, Y.D. (2006) Prediction of Protease Types in a Hybridization Space. Biochemical and Biophysical Research Communications, 339, 1015-1020. https://doi.org/10.1016/j.bbrc.2005.10.196
|
[72]
|
Lin, W.Z., Fang, J.A., Xiao, X. and Chou, K.C. (2011) iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model. PLoS ONE, 6, e24756. https://doi.org/10.1371/journal.pone.0024756
|
[73]
|
Kandaswamy, K.K., Chou, K.C., Martinetz, T., Moller, S., Suganthan, P.N., Sridharan, S. and Pugalenthi, G. (2011) AFP-Pred: A Random Forest Approach for Predicting Antifreeze Proteins from Sequence-Derived Properties. Journal of Theoretical Biology, 270, 56-62. https://doi.org/10.1016/j.jtbi.2010.10.037
|
[74]
|
Chou, K.C. (2015) Impacts of Bioinformatics, to Medicinal Chemistry. Medicinal Chemistry, 11, 218-234.
https://doi.org/10.2174/1573406411666141229162834
|
[75]
|
Fang, Y., Guo, Y., Feng, Y. and Li, M. (2008) Predicting DNA-Binding Proteins: Approached from Chou’s Pseudo Amino Acid Composition and Other Specific Sequence Features. Amino Acids, 34, 103-109.
https://doi.org/10.1007/s00726-007-0568-2
|
[76]
|
Zhang, S.W., Chen, W., Yang, F. and Pan, Q. (2008) Using Chou’s Pseudo Amino Acid Composition to Predict Protein Quaternary Structure: A Sequence-Segmented PseAAC Approach. Amino Acids, 35, 591-598.
https://doi.org/10.1007/s00726-008-0086-x
|
[77]
|
Chen, C., Chen, L., Zou, X. and Cai, P. (2009) Prediction of Protein Secondary Structure Content by Using the Concept of Chou’s Pseudo Amino Acid Composition and Support Vector Machine. Protein & Peptide Letters, 16, 27-31. https://doi.org/10.2174/092986609787049420
|
[78]
|
Lin, H., Wang, H., Ding, H., Chen, Y.L. and Li, Q.Z. (2009) Prediction of Subcellular Localization of Apoptosis Protein Using Chou’s Pseudo Amino Acid Composition. Acta Biotheoretica, 57, 321-330.
https://doi.org/10.1007/s10441-008-9067-4
|
[79]
|
Esmaeili, M., Mohabatkar, H. and Mohsenzadeh, S. (2010) Using the Concept of Chou’s Pseudo Amino Acid Composition for Risk Type Prediction of Human Papillomaviruses. Journal of Theoretical Biology, 263, 203-209. https://doi.org/10.1016/j.jtbi.2009.11.016
|
[80]
|
Mohabatkar, H. (2010) Prediction of Cyclin Proteins Using Chou’s Pseudo Amino Acid Composition. Protein & Peptide Letters, 17, 1207-1214. https://doi.org/10.2174/092986610792231564
|
[81]
|
Qiu, J.D., Huang, J.H., Shi, S.P. and Liang, R.P. (2010) Using the Concept of Chou’s Pseudo Amino Acid Composition to Predict Enzyme Family Classes: An Approach with Support Vector Machine Based on Discrete Wavelet Transform. Protein & Peptide Letters, 17, 715-722. https://doi.org/10.2174/092986610791190372
|
[82]
|
Sahu, S.S. and Panda, G. (2010) A Novel Feature Representation Method Based on Chou’s Pseudo Amino Acid Composition for Protein Structural Class Prediction. Computational Biology and Chemistry, 34, 320-327.
https://doi.org/10.1016/j.compbiolchem.2010.09.002
|
[83]
|
Yu, L., Guo, Y., Li, Y., Li, G., Li, M., Luo, J., Xiong, W. and Qin, W. (2010) SecretP: Identifying Bacterial Secreted Proteins by Fusing New Features into Chou’s Pseudo Amino Acid Composition. Journal of Theoretical Biology, 267, 1-6. https://doi.org/10.1016/j.jtbi.2010.08.001
|
[84]
|
Guo, J., Rao, N., Liu, G., Yang, Y. and Wang, G. (2011) Predicting Protein Folding Rates Using the Concept of Chou’s Pseudo Amino Acid Composition. Journal of Computational Chemistry, 32, 1612-1617.
https://doi.org/10.1002/jcc.21740
|
[85]
|
Li, J.N. and Wang, Y. (2011) Using a Novel AdaBoost Algorithm and Chou’s Pseudo Amino Acid Composition for Predicting Protein Subcellular Localization. Protein & Peptide Letters, 18, 1219-1225.
https://doi.org/10.2174/092986611797642797
|
[86]
|
Mohammad, B.M., Behjati, M. and Mohabatkar, H. (2011) Prediction of Metalloproteinase Family Based on the Concept of Chou’s Pseudo Amino Acid Composition Using a Machine Learning Approach. Journal of Structural and Functional Genomics, 12, 191-197. https://doi.org/10.1007/s10969-011-9120-4
|
[87]
|
Zou, D., He, Z., He, J. and Xia, Y. (2011) Supersecondary Structure Prediction Using Chou’s Pseudo Amino Acid Composition. Journal of Computational Chemistry, 32, 271-278. https://doi.org/10.1002/jcc.21616
|
[88]
|
Du, P., Wang, X., Xu, C. and Gao, Y. (2012) PseAAC-Builder: A Cross-Platform Stand-Alone Program for Generating Various Special Chou’s Pseudo Amino Acid Compositions. Analytical Biochemistry, 425, 117-119.
https://doi.org/10.1016/j.ab.2012.03.015
|
[89]
|
Hayat, M. and Khan, A. (2012) Discriminating Outer Membrane Proteins with Fuzzy K-Nearest Neighbor Algorithms Based on the General Form of Chou’s PseAAC. Protein & Peptide Letters, 19, 411-421.
https://doi.org/10.2174/092986612799789387
|
[90]
|
Li, L.Q., Zhang, Y., Zou, L.Y., Zhou, Y. and Zheng, X.Q. (2012) Prediction of Protein Subcellular Multi-Localization Based on the General Form of Chou’s Pseudo Amino Acid Composition. Protein & Peptide Letters, 19, 375-387. https://doi.org/10.2174/092986612799789369
|
[91]
|
Liao, B., Xiang, Q. and Li, D. (2012) Incorporating Secondary Features into the General Form of Chou’s PseAAC for Predicting Protein Structural Class. Protein & Peptide Letters, 19, 1133-1138.
https://doi.org/10.2174/092986612803217051
|
[92]
|
Mei, S. (2012) Multi-Kernel Transfer Learning Based on Chou’s PseAAC Formulation for Protein Submitochondria Localization. Journal of Theoretical Biology, 293, 121-130. https://doi.org/10.1016/j.jtbi.2011.10.015
|
[93]
|
Mei, S. (2012) Predicting Plant Protein Subcellular Multi-Localization by Chou’s PseAAC Formulation Based Multi-Label Homolog Knowledge Transfer Learning. Journal of Theoretical Biology, 310, 80-87.
https://doi.org/10.1016/j.jtbi.2012.06.028
|
[94]
|
Qin, Y.F., Wang, C.H., Yu, X.Q., Zhu, J., Liu, T.G. and Zheng, X.Q. (2012) Predicting Protein Structural Class by Incorporating Patterns of Overrepresented k-Mers into the General Form of Chou’s PseAAC. Protein & Peptide Letters, 19, 388-397. https://doi.org/10.2174/092986612799789350
|
[95]
|
Sun, X.Y., Shi, S.P., Qiu, J.D., Suo, S.B., Huang, S.Y. and Liang, R.P. (2012) Identifying Protein Quaternary Structural Attributes by Incorporating Physicochemical Properties into the General Form of Chou’s PseAAC via Discrete Wavelet Transform. Molecular BioSystems, 8, 3178-3184. https://doi.org/10.1039/c2mb25280e
|
[96]
|
Zhao, X.W., Li, X.T., Ma, Z.Q. and Yin, M.H. (2012) Identify DNA-Binding Proteins with Optimal Chou’s Amino Acid Composition. Protein & Peptide Letters, 19, 398-405. https://doi.org/10.2174/092986612799789404
|
[97]
|
Zhao, X.W., Ma, Z.Q. and Yin, M.H. (2012) Predicting Protein-Protein Interactions by Combing Various Sequence-Derived Features into the General Form of Chou’s Pseudo Amino Acid Composition. Protein & Peptide Letters, 19, 492-500. https://doi.org/10.2174/092986612800191080
|
[98]
|
Cao, D.S., Xu, Q.S. and Liang, Y.Z. (2013) Propy: A Tool to Generate Various Modes of Chou’s PseAAC. Bioinformatics, 29, 960-962. https://doi.org/10.1093/bioinformatics/btt072
|
[99]
|
Chang, T.H., Wu, L.C., Lee, T.Y., Chen, S.P., Huang, H.D. and Horng, J.T. (2013) EuLoc: A Web-Server for Accurately Predict Protein Subcellular Localization in Eukaryotes by Incorporating Various Features of Sequence Segments into the General Form of Chou’s PseAAC. Journal of Computer-Aided Molecular Design, 27, 91-103. https://doi.org/10.1007/s10822-012-9628-0
|
[100]
|
Fan, G.-L., Li, Q.-Z. and Zuo, Y.-C. (2013) Predicting Acidic and Alkaline Enzymes by Incorporating the Average Chemical Shift and Gene Ontology Informations into the General Form of Chou’s PseAAC. Process Biochemistry, 48, 1048-1053. https://doi.org/10.1016/j.procbio.2013.05.012
|
[101]
|
Fan, G.L. and Li, Q.Z. (2013) Discriminating Bioluminescent Proteins by Incorporating Average Chemical Shift and Evolutionary Information into the General Form of Chou’s Pseudo Amino Acid Composition. Journal of Theoretical Biology, 334, 45-51. https://doi.org/10.1016/j.jtbi.2013.06.003
|
[102]
|
Khosravian, M., Faramarzi, F.K., Beigi, M.M., Behbahani, M. and Mohabatkar, H. (2013) Predicting Antibacterial Peptides by the Concept of Chou’s Pseudo Amino Acid Composition and Machine Learning Methods. Protein & Peptide Letters, 20, 180-186. https://doi.org/10.2174/092986613804725307
|
[103]
|
Mohabatkar, H., Beigi, M.M., Abdolahi, K. and Mohsenzadeh, S. (2013) Prediction of Allergenic Proteins by Means of the Concept of Chou’s Pseudo Amino Acid Composition and a Machine Learning Approach. Medicinal Chemistry, 9, 133-137. https://doi.org/10.2174/157340613804488341
|
[104]
|
Pacharawongsakda, E. and Theeramunkong, T. (2013) Predict Subcellular Locations of Singleplex and Multiplex Proteins by Semi-Supervised Learning and Dimension-Reducing General Mode of Chou’s PseAAC. IEEE Transactions on NanoBioscience, 12, 311-320. https://doi.org/10.1109/TNB.2013.2272014
|
[105]
|
Sarangi, A.N., Lohani, M. and Aggarwal, R. (2013) Prediction of Essential Proteins in Prokaryotes by Incorporating Various Physico-Chemical Features into the General form of Chou’s Pseudo Amino Acid Composition. Protein & Peptide Letters, 20, 781-795. https://doi.org/10.2174/0929866511320070008
|
[106]
|
Wang, X., Li, G.Z. and Lu, W.C. (2013) Virus-ECC-mPLoc: A Multi-Label Predictor for Predicting the Subcellular Localization of Virus Proteins with Both Single and Multiple Sites Based on a General Form of Chou’s Pseudo Amino Acid Composition. Protein & Peptide Letters, 20, 309-317.
https://doi.org/10.2174/092986613804910608
|
[107]
|
Niu, X.H., et al. (2013) Using the Concept of Chou’s Pseudo Amino Acid Composition to Predict Protein Solubility: An Approach with Entropies in Information Theory. Journal of Theoretical Biology, 332, 211-217.
https://doi.org/10.1016/j.jtbi.2013.03.010
|
[108]
|
Xie, H.L., Fu, L. and Nie, X.D. (2013) Using Ensemble SVM to Identify Human GPCRs N-Linked Glycosylation Sites Based on the General Form of Chou’s PseAAC. Protein Engineering, Design and Selection, 26, 735-742.
https://doi.org/10.1093/protein/gzt042
|
[109]
|
Du, P., Gu, S. and Jiao, Y. (2014) PseAAC-General: Fast Building Various Modes of General Form of Chou’s Pseudo Amino Acid Composition for Large-Scale Protein Datasets. International Journal of Molecular Sciences, 15, 3495-3506. https://doi.org/10.3390/ijms15033495
|
[110]
|
Hajisharifi, Z., Piryaiee, M., Mohammad Beigi, M., Behbahani, M. and Mohabatkar, H. (2014) Predicting Anticancer Peptides with Chou’s Pseudo Amino Acid Composition and Investigating Their Mutagenicity via Ames Test. Journal of Theoretical Biology, 341, 34-40. https://doi.org/10.1016/j.jtbi.2013.08.037
|
[111]
|
Han, G.S., Yu, Z.G. and Anh, V. (2014) A Two-Stage SVM Method to Predict Membrane Protein Types by Incorporating Amino Acid Classifications and Physicochemical Properties into a General Form of Chou’s PseAAC. Journal of Theoretical Biology, 344, 31-39. https://doi.org/10.1016/j.jtbi.2013.11.017
|
[112]
|
Hayat, M. and Iqbal, N. (2014) Discriminating Protein Structure Classes by Incorporating Pseudo Average Chemical Shift to Chou’s General PseAAC and Support Vector Machine. Computer Methods and Programs in Biomedicine, 116, 184-192. https://doi.org/10.1016/j.cmpb.2014.06.007
|
[113]
|
Jia, C., Li, X.N. and Wang, Z. (2014) Prediction of Protein S-Nitrosylation Sites Based on Adapted Normal Distribution Bi-Profile Bayes and Chou’s Pseudo Amino Acid Composition. International Journal of Molecular Sciences, 15, 10410-10423. https://doi.org/10.3390/ijms150610410
|
[114]
|
Li, L., Yu, S., Xiao, W., Li, Y., Li, M., Huang, L., Zheng, X., Zhou, S. and Yang, H. (2014) Prediction of Bacterial Protein Subcellular Localization by Incorporating Various Features into Chou’s PseAAC and a Backward Feature Selection Approach. Biochimie, 104, 100-107. https://doi.org/10.1016/j.biochi.2014.06.001
|
[115]
|
Mondal, S. and Pai, P.P. (2014) Chou’s Pseudo Amino Acid Composition Improves Sequence-Based Antifreeze Protein Prediction. Journal of Theoretical Biology, 356, 30-35. https://doi.org/10.1016/j.jtbi.2014.04.006
|
[116]
|
Zhang, J., Zhao, X., Sun, P. and Ma, Z. (2014) PSNO: Predicting Cysteine S-Nitrosylation Sites by Incorporating Various Sequence-Derived Features into the General Form of Chou’s PseAAC. International Journal of Molecular Sciences, 15, 11204-11219. https://doi.org/10.3390/ijms150711204
|
[117]
|
Ahmad, S., Kabir, M. and Hayat, M. (2015) Identification of Heat Shock Protein Families and J-Protein Types by Incorporating Dipeptide Composition into Chou’s General PseAAC. Computer Methods and Programs in Biomedicine, 122, 165-174. https://doi.org/10.1016/j.cmpb.2015.07.005
|
[118]
|
Dehzangi, A., Heffernan, R., Sharma, A., Lyons, J., Paliwal, K. and Sattar, A. (2015) Gram-Positive and Gram-Negative Protein Subcellular Localization by Incorporating Evolutionary-Based Descriptors into Chou’s General PseAAC. Journal of Theoretical Biology, 364, 284-294. https://doi.org/10.1016/j.jtbi.2014.09.029
|
[119]
|
Khan, Z.U., Hayat, M. and M.Khan, A. (2015) Discrimination of Acidic and Alkaline Enzyme Using Chou’s Pseudo Amino Acid Composition in Conjunction with Probabilistic Neural Network Model. Journal of Theoretical Biology, 365, 197-203. https://doi.org/10.1016/j.jtbi.2014.10.014
|
[120]
|
Liu, B., Chen, J. and Wang, X. (2015) Protein Remote Homology Detection by Combining Chou’s Distance-Pair Pseudo Amino Acid Composition and Principal Component Analysis. Molecular Genetics and Genomics, 290, 1919-1931. https://doi.org/10.1007/s00438-015-1044-4
|
[121]
|
Liu, B., Xu, J., Fan, S., Xu, R., Zhou, J. and Wang, X. (2015) PseDNA-Pro: DNA-Binding Protein Identification by Combining Chou’s PseAAC and Physicochemical Distance Transformation. Molecular Informatics, 34, 8-17.
https://doi.org/10.1002/minf.201400025
|
[122]
|
Mandal, M., Mukhopadhyay, A. and Maulik, U. (2015) Prediction of Protein Subcellular Localization by Incorporating Multiobjective PSO-Based Feature Subset Selection into the General Form of Chou’s PseAAC. Medical & Biological Engineering & Computing, 53, 331-344. https://doi.org/10.1007/s11517-014-1238-7
|
[123]
|
Sanchez, V., Peinado, A.M., Perez-Cordoba, J.L. and Gomez, A.M. (2015) A New Signal Characterization and Signal-Based Chou’s PseAAC Representation of Protein Sequences. Journal of Bioinformatics and Computational Biology, 13, Article ID: 1550024. https://doi.org/10.1142/S0219720015500249
|
[124]
|
Sharma, R., Dehzangi, A., Lyons, J., Paliwal, K., Tsunoda, T. and Sharma, A. (2015) Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features into Chou’s General PseAAC. IEEE Transactions on NanoBioscience, 14, 915-926.
https://doi.org/10.1109/TNB.2015.2500186
|
[125]
|
Zhang, M., Zhao, B. and Li, X.U. (2015) Predicting Industrial Polymer Melt Index via Incorporating Chaotic Characters into Chou’s General PseAAC. Chemometrics and Intelligent Laboratory Systems (CHEMOLAB), 146, 232-240. https://doi.org/10.1016/j.chemolab.2015.05.028
|
[126]
|
Zhang, S.L. (2015) Accurate Prediction of Protein Structural Classes by Incorporating PSSS and PSSM into Chou’s General PseAAC. Chemometrics and Intelligent Laboratory Systems, 142, 28-35.
https://doi.org/10.1016/j.chemolab.2015.01.004
|
[127]
|
Behbahani, M., Mohabatkar, H. and Nosrati, M. (2016) Analysis and Comparison of Lignin Peroxidases between Fungi and Bacteria Using Three Different Modes of Chou’s General Pseudo Amino Acid Composition. Journal of Theoretical Biology, 411, 1-5. https://doi.org/10.1016/j.jtbi.2016.09.001
|
[128]
|
Jiao, Y.S. and Du, P.F. (2016) Prediction of Golgi-Resident Protein Types Using General Form of Chou’s Pseudo Amino Acid Compositions: Approaches with Minimal Redundancy Maximal Relevance Feature Selection. Journal of Theoretical Biology, 402, 38-44. https://doi.org/10.1016/j.jtbi.2016.04.032
|
[129]
|
Ju, Z., Cao, J.Z. and Gu, H. (2016) Predicting Lysine Phosphoglycerylation with Fuzzy SVM by Incorporating k-Spaced Amino Acid Pairs into Chou’s General PseAAC. Journal of Theoretical Biology, 397, 145-150.
https://doi.org/10.1016/j.jtbi.2016.02.020
|
[130]
|
Kabir, M. and Hayat, M. (2016) iRSpot-GAEnsC: Identifing Recombination Spots via Ensemble Classifier and Extending the Concept of Chou’s PseAAC to Formulate DNA Samples. Molecular Genetics and Genomics, 291, 285-296. https://doi.org/10.1007/s00438-015-1108-5
|
[131]
|
Tahir, M. and Hayat, M. (2016) iNuc-STNC: A Sequence-Based Predictor for Identification of Nucleosome Positioning in Genomes by Extending the Concept of SAAC and Chou’s PseAAC. Molecular BioSystems, 12, 2587-2593. https://doi.org/10.1039/C6MB00221H
|
[132]
|
Tiwari, A.K. (2016) Prediction of G-Protein Coupled Receptors and Their Subfamilies by Incorporating Various Sequence Features into Chou’s General PseAAC. Computer Methods and Programs in Biomedicine, 134, 197-213. https://doi.org/10.1016/j.cmpb.2016.07.004
|
[133]
|
Ju, Z. and He, J.J. (2017) Prediction of Lysine Propionylation Sites Using Biased SVM and Incorporating Four Different Sequence Features into Chou’s PseAAC. Journal of Molecular Graphics and Modelling, 76, 356-363.
https://doi.org/10.1016/j.jmgm.2017.07.022
|
[134]
|
Ju, Z. and He, J.J. (2017) Prediction of Lysine Crotonylation Sites by Incorporating the Composition of k-Spaced Amino Acid Pairs into Chou’s General PseAAC. Journal of Molecular Graphics and Modelling, 77, 200-204.
https://doi.org/10.1016/j.jmgm.2017.08.020
|
[135]
|
Khan, M., Hayat, M., Khan, S.A. and Iqbal, N. (2017) Unb-DPC: Identify Mycobacterial Membrane Protein Types by Incorporating Un-Biased Dipeptide Composition into Chou’s General PseAAC. Journal of Theoretical Biology, 415, 13-19. https://doi.org/10.1016/j.jtbi.2016.12.004
|
[136]
|
Liang, Y. and Zhang, S. (2017) Predict Protein Structural Class by Incorporating Two Different Modes of Evolutionary Information into Chou’s General Pseudo Amino Acid Composition. Journal of Molecular Graphics and Modelling, 78, 110-117. https://doi.org/10.1016/j.jmgm.2017.10.003
|
[137]
|
Meher, P.K., Sahu, T.K., Saini, V. and Rao, A.R. (2017) Predicting Antimicrobial Peptides with Improved Accuracy by Incorporating the Compositional, Physico-Chemical and Structural Features into Chou’s General PseAAC. Scientific Reports, 7, Article No. 42362. https://doi.org/10.1038/srep42362
|
[138]
|
Qiu, W.R., Zheng, Q.S., Sun, B.Q. and Xiao, X. (2017) Multi-iPPseEvo: A Multi-Label Classifier for Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into Chou’s General PseAAC via Grey System Theory. Molecular Informatics, 36, UNSP 1600085. https://doi.org/10.1002/minf.201600085
|
[139]
|
Tripathi, P. and Pandey, P.N. (2017) A Novel Alignment-Free Method to Classify Protein Folding Types by Combining Spectral Graph Clustering with Chou’s Pseudo Amino Acid Composition. Journal of Theoretical Biology, 424, 49-54. https://doi.org/10.1016/j.jtbi.2017.04.027
|
[140]
|
Xu, C., Ge, L., Zhang, Y., Dehmer, M. and Gutman, I. (2017) Prediction of Therapeutic Peptides by Incorporating q-Wiener Index into Chou’s General PseAAC. Journal of Biomedical Informatics.
|
[141]
|
Yu, B., Li, S., Qiu, W.Y., Chen, C., Chen, R.X., Wang, L., Wang, M.H. and Zhang, Y. (2017) Accurate Prediction of Subcellular Location of Apoptosis Proteins Combining Chou’s PseAAC and PsePSSM Based on Wavelet Denoising. Oncotarget, 8, 107640-107665. https://doi.org/10.18632/oncotarget.22585
|
[142]
|
Yu, B., Lou, L., Li, S., Zhang, Y., Qiu, W., Wu, X., Wang, M. and Tian, B. (2017) Prediction of Protein Structural Class for Low-Similarity Sequences Using Chou’s Pseudo Amino Acid Composition and Wavelet Denoising. Journal of Molecular Graphics and Modelling, 76, 260-273. https://doi.org/10.1016/j.jmgm.2017.07.012
|
[143]
|
Ahmad, J. and Hayat, M. (2018) MFSC: Multi-Voting Based Feature Selection for Classification of Golgi Proteins by Adopting the General Form of Chou’s PseAAC Components. Journal of Theoretical Biology, 463, 99-109. https://doi.org/10.1016/j.jtbi.2018.12.017
|
[144]
|
Akbar, S. and Hayat, M. (2018) iMethyl-STTNC: Identification of N(6)-Methyladenosine Sites by Extending the Idea of SAAC into Chou’s PseAAC to Formulate RNA Sequences. Journal of Theoretical Biology, 455, 205-211.
https://doi.org/10.1016/j.jtbi.2018.07.018
|
[145]
|
Arif, M., Hayat, M. and Jan, Z. (2018) iMem-2LSAAC: A Two-Level Model for Discrimination of Membrane Proteins and Their Types by Extending the Notion of SAAC into Chou’s Pseudo Amino Acid Composition. Journal of Theoretical Biology, 442, 11-21. https://doi.org/10.1016/j.jtbi.2018.01.008
|
[146]
|
Butt, A.H., Rasool, N. and Khan, Y.D. (2018) Predicting Membrane Proteins and Their Types by Extracting Various Sequence Features into Chou’s General PseAAC. Molecular Biology Reports.
|
[147]
|
Contreras-Torres, E. (2018) Predicting Structural Classes of Proteins by Incorporating Their Global and Local Physicochemical and Conformational Properties into General Chou’s PseAAC. Journal of Theoretical Biology, 454, 139-145. https://doi.org/10.1016/j.jtbi.2018.05.033
|
[148]
|
Fu, X., Zhu, W., Liso, B., Cai, L., Peng, L. and Yang, J. (2018) Improved DNA-Binding Protein Identification by Incorporating Evolutionary Information into the Chou’s PseAAC. IEEE Access, 20.
|
[149]
|
Javed, F. and Hayat, M. (2018) Predicting Subcellular Localizations of Multi-Label Proteins by Incorporating the Sequence Features into Chou’s PseAAC. Genomics. https://doi.org/10.1016/j.ygeno.2018.09.004
|
[150]
|
Krishnan, M.S. (2018) Using Chou’s General PseAAC to Analyze the Evolutionary Relationship of Receptor Associated Proteins (RAP) with Various Folding Patterns of Protein Domains. Journal of Theoretical Biology, 445, 62-74. https://doi.org/10.1016/j.jtbi.2018.02.008
|
[151]
|
Liang, Y. and Zhang, S. (2018) Identify Gram-Negative Bacterial Secreted Protein Types by Incorporating Different Modes of PSSM into Chou’s General PseAAC via Kull-Back-Leibler Divergence. Journal of Theoretical Biology, 454, 22-29. https://doi.org/10.1016/j.jtbi.2018.05.035
|
[152]
|
Mousavizadegan, M. and Mohabatkar, H. (2018) Computational Prediction of Antifungal Peptides via Chou’s PseAAC and SVM. Journal of Bioinformatics and Computational Biology, 16, Article ID: 1850016.
https://doi.org/10.1142/S0219720018500166
|
[153]
|
Qiu, W., Li, S., Cui, X., Yu, Z., Wang, M., Du, J., Peng, Y. and Yu, B. (2018) Predicting Protein Submitochondrial Locations by Incorporating the Pseudo-Position Specific Scoring Matrix into the General Chou’s Pseudo-Amino Acid Composition. Journal of Theoretical Biology, 450, 86-103.
https://doi.org/10.1016/j.jtbi.2018.04.026
|
[154]
|
Rahman, S.M., Shatabda, S., Saha, S., Kaykobad, M. and Sohel Rahman, M. (2018) DPP-PseAAC: A DNA-Binding Protein Prediction Model Using Chou’s General PseAAC. Journal of Theoretical Biology, 452, 22-34.
https://doi.org/10.1016/j.jtbi.2018.05.006
|
[155]
|
Sankari, E.S. and Manimegalai, D.D. (2018) Predicting Membrane Protein Types by Incorporating a Novel Feature Set into Chou’s General PseAAC. Journal of Theoretical Biology, 455, 319-328.
https://doi.org/10.1016/j.jtbi.2018.07.032
|
[156]
|
Srivastava, A., Kumar, R. and Kumar, M. (2018) BlaPred: Predicting and Classifying Beta-Lactamase Using a 3-Tier Prediction System via Chou’s General PseAAC. Journal of Theoretical Biology, 457, 29-36.
https://doi.org/10.1016/j.jtbi.2018.08.030
|
[157]
|
Zhang, S. and Duan, X. (2018) Prediction of Protein Subcellular Localization with Oversampling Approach and Chou’s General PseAAC. Journal of Theoretical Biology, 437, 239-250. https://doi.org/10.1016/j.jtbi.2017.10.030
|
[158]
|
Zhang, S. and Liang, Y. (2018) Predicting Apoptosis Protein Subcellular Localization by Integrating Auto-Cross Correlation and PSSM into Chou’s PseAAC. Journal of Theoretical Biology, 457, 163-169.
https://doi.org/10.1016/j.jtbi.2018.08.042
|
[159]
|
Adilina, S., Farid, D.M. and Shatabda, S. (2019) Effective DNA Binding Protein Prediction by Using Key Features via Chou’s General PseAAC. Journal of Theoretical Biology, 460, 64-78.
https://doi.org/10.1016/j.jtbi.2018.10.027
|
[160]
|
Ahmad, J. and Hayat, M. (2019) MFSC: Multi-Voting Based Feature Selection for Classification of Golgi Proteins by Adopting the General Form of Chou’s PseAAC Components. Journal of Theoretical Biology, 463, 99-109. https://doi.org/10.1016/j.jtbi.2018.12.017
|
[161]
|
Awais, M., Hussain, W., Khan, Y.D., Rasool, N., Khan, S.A. and Chou, K.C. (2019) iPhosH-PseAAC: Identify Phosphohistidine Sites in Proteins by Blending Statistical Moments and Position Relative Features According to the Chou’s 5-Step Rule and General Pseudo Amino Acid Composition. IEEE/ACM Transactions on Computational Biology and Bioinformatics. https://doi.org/10.1109/TCBB.2019.2919025
|
[162]
|
Butt, A.H., Rasool, N. and Khan, Y.D. (2019) Prediction of Antioxidant Proteins by Incorporating Statistical Moments Based Features into Chou’s PseAAC. Journal of Theoretical Biology, 473, 1-8.
https://doi.org/10.1016/j.jtbi.2019.04.019
|
[163]
|
Chen, G., Cao, M., Yu, J., Guo, X. and Shi, S. (2019) Prediction and Functional Analysis of Prokaryote Lysine Acetylation Site by Incorporating Six Types of Features into Chou’s General PseAAC. Journal of Theoretical Biology, 461, 92-101. https://doi.org/10.1016/j.jtbi.2018.10.047
|
[164]
|
Ehsan, A., Mahmood, M.K., Khan, Y.D., Barukab, O.M., Khan, S.A. and Chou, K.C. (2019) iHyd-PseAAC (EPSV): Identify Hydroxylation Sites in Proteins by Extracting Enhanced Position and Sequence Variant Feature via Chou’s 5-Step Rule and General Pseudo Amino Acid Composition. Current Genomics, 20, 124-133.
https://doi.org/10.2174/1389202920666190325162307
|
[165]
|
Kabir, M., Ahmad, S., Iqbal, M. and Hayat, M. (2019) iNR-2L: A Two-Level Sequence-Based Predictor Developed via Chou’s 5-Steps Rule and General PseAAC for Identifying Nuclear Receptors and Their Families. Genomics. https://doi.org/10.1016/j.ygeno.2019.02.006
|
[166]
|
Ning, Q., Ma, Z. and Zhao, X. (2019) dForml(KNN)-PseAAC: Detecting Formylation Sites from Protein Sequences Using K-Nearest Neighbor Algorithm via Chou’s 5-Step Rule and Pseudo Components. Journal of Theoretical Biology, 470, 43-49. https://doi.org/10.1016/j.jtbi.2019.03.011
|
[167]
|
Shen, Y., Tang, J. and Guo, F. (2019) Identification of Protein Subcellular Localization via Integrating Evolutionary and Physicochemical Information into Chou’s General PseAAC. Journal of Theoretical Biology, 462, 230-239. https://doi.org/10.1016/j.jtbi.2018.11.012
|
[168]
|
Tahir, M., Hayat, M. and Khan, S.A. (2019) iNuc-ext-PseTNC: An Efficient Ensemble Model for Identification of Nucleosome Positioning by Extending the Concept of Chou’s PseAAC to Pseudo-Tri-Nucleotide Composition. Molecular Genetics and Genomics, 294, 199-210. https://doi.org/10.1007/s00438-018-1498-2
|
[169]
|
Tian, B., Wu, X., Chen, C., Qiu, W., Ma, Q. and Yu, B. (2019) Predicting Protein-Protein Interactions by Fusing Various Chou’s Pseudo Components and Using Wavelet Denoising Approach. Journal of Theoretical Biology, 462, 329-346. https://doi.org/10.1016/j.jtbi.2018.11.011
|
[170]
|
Wang, L., Zhang, R. and Mu, Y. (2019) Fu-SulfPred: Identification of Protein S-Sulfenylation Sites by Fusing Forests via Chou’s General PseAAC. Journal of Theoretical Biology, 461, 51-58.
https://doi.org/10.1016/j.jtbi.2018.10.046
|
[171]
|
Chou, K.C. (2017) An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science. Current Topics in Medicinal Chemistry, 17, 2337-2358.
https://doi.org/10.2174/1568026617666170414145508
|
[172]
|
Shen, H.B. and Chou, K.C. (2008) PseAAC: A Flexible Web-Server for Generating Various Kinds of Protein Pseudo Amino Acid Composition. Analytical Biochemistry, 373, 386-388.
https://doi.org/10.1016/j.ab.2007.10.012
|
[173]
|
Chou, K.C. (2009) Pseudo Amino Acid Composition and Its Applications in Bioinformatics, Proteomics and System Biology. Current Proteomics, 6, 262-274. https://doi.org/10.2174/157016409789973707
|
[174]
|
Wang, J., Yang, B., Revote, J., Leier, A., Marquez-Lago, T.T., Webb, G., Song, J., Chou, K.C. and Lithgow, T. (2017) POSSUM: A Bioinformatics, Toolkit for Generating Numerical Sequence Feature Descriptors Based on PSSM Profiles. Bioinformatics, 33, 2756-2758. https://doi.org/10.1093/bioinformatics/btx302
|
[175]
|
Chen, W., Lei, T.Y., Jin, D.C., Lin, H. and Chou, K.C. (2014) PseKNC: A Flexible Web-Server for Generating Pseudo K-Tuple Nucleotide Composition. Analytical Biochemistry, 456, 53-60.
https://doi.org/10.1016/j.ab.2014.04.001
|
[176]
|
Liu, B., Li, F.U., Fang, L., Wang, X. and Chou, K.C. (2014) repDNA: A Python Package to Generate Various Modes of Feature Vectors for DNA Sequences by Incorporating User-Defined Physicochemical Properties and Sequence-Order Effects. Bioinformatics, 31, 1307-1309. https://doi.org/10.1093/bioinformatics/btu820
|
[177]
|
Liu, B., Li, F.U., Fang, L., Wang, X. and Chou, K.C. (2016) repRNA: A Web Server for Generating Various Feature Vectors of RNA Sequences. Molecular Genetics and Genomics, 291, 473-481.
https://doi.org/10.1007/s00438-015-1078-7
|
[178]
|
Liu, B., Li, F.U., Wang, X., Chen, J., Fang, L. and Chou, K.C. (2015) Pse-in-One: A Web Server for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. Nucleic Acids Research, 43, W65-W71. https://doi.org/10.1093/nar/gkv458
|
[179]
|
Chen, W., Lin, H. and Chou, K.C. (2015) Pseudo Nucleotide Composition or PseKNC: An Effective Formulation for Analyzing Genomic Sequences. Molecular BioSystems, 11, 2620-2634.
https://doi.org/10.1039/C5MB00155B
|
[180]
|
Chen, W., Feng, P.M., Lin, H. and Chou, K.C. (2014) iSS-PseDNC: Identifying Splicing Sites Using Pseudo Dinucleotide Composition. Biomed Research International (BMRI), 2014, Article ID: 623149.
https://doi.org/10.1155/2014/623149
|
[181]
|
Chen, W., Tang, H., Ye, J., Lin, H. and Chou, K.C. (2016) iRNA-PseU: Identifying RNA Pseudouridine Sites. Molecular Therapy, Nucleic Acids, 5, e332.
|
[182]
|
Liu, B., Long, R. and Chou, K.C. (2016) iDHS-EL: Identifying DNase I Hypersensitivesites by Fusing Three Different Modes of Pseudo Nucleotide Composition into an Ensemble Learning Framework. Bioinformatics, 32, 2411-2418. https://doi.org/10.1093/bioinformatics/btw186
|
[183]
|
Feng, P., Ding, H., Yang, H., Chen, W., Lin, H. and Chou, K.C. (2017) iRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC. Molecular Therapy Nucleic Acids, 7, 155-163. https://doi.org/10.1016/j.omtn.2017.03.006
|
[184]
|
Liu, B., Wang, S., Long, R. and Chou, K.C. (2017) iRSpot-EL: Identify Recombination Spots with an Ensemble Learning Approach. Bioinformatics, 33, 35-41. https://doi.org/10.1093/bioinformatics/btw539
|
[185]
|
Liu, B., Yang, F. and Chou, K.C. (2017) 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. Molecular Therapy, Nucleic Acids, 7, 267-277.
https://doi.org/10.1016/j.omtn.2017.04.008
|
[186]
|
Al Maruf, M.A. and Shatabda, S. (2018) iRSpot-SF: Prediction of Recombination Hotspots by Incorporating Sequence Based Features into Chou’s Pseudo Components. Genomics.
https://doi.org/10.1016/j.ygeno.2018.06.003
|
[187]
|
Sabooh, M.F., Iqbal, N., Khan, M., Khan, M. and Maqbool, H.F. (2018) Identifying 5-Methylcytosine Sites in RNA Sequence Using Composite Encoding Feature into Chou’s PseKNC. Journal of Theoretical Biology, 452, 1-9. https://doi.org/10.1016/j.jtbi.2018.04.037
|
[188]
|
Zhang, L. and Kong, L. (2018) iRSpot-ADPM: Identify Recombination Spots by Incorporating the Associated Dinucleotide Product Model into Chou’s Pseudo Components. Journal of Theoretical Biology, 441, 1-8.
https://doi.org/10.1016/j.jtbi.2017.12.025
|
[189]
|
Zhang, L. and Kong, L. (2019) iRSpot-PDI: Identification of Recombination Spots by Incorporating Dinucleotide Property Diversity Information into Chou’s Pseudo Components. Genomics, 111, 457-464.
https://doi.org/10.1016/j.ygeno.2018.03.003
|
[190]
|
Liu, B., Wu, H. and Chou, K.C. (2017) Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. Natural Sciences, 9, 67-91.
https://doi.org/10.4236/ns.2017.94007
|
[191]
|
Shen, H.B. and Chou, K.C. (2005) Using Optimized Evidence-Theoretic K-Nearest Neighbor Classifier and Pseudo Amino Acid Composition to Predict Membrane Protein Types. Biochemical and Biophysical Research Communications, 334, 288-292. https://doi.org/10.1016/j.bbrc.2005.06.087
|
[192]
|
Chou, K.C. and Shen, H.B. (2007) Euk-mPLoc: A Fusion Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction by Incorporating Multiple Sites. Journal of Proteome Research, 6, 1728-1734.
https://doi.org/10.1021/pr060635i
|
[193]
|
Shen, H.B. and Chou, K.C. (2009) QuatIdent: A Web Server for Identifying Protein Quaternary Structural Attribute by Fusing Functional Domain and Sequential Evolution Information. Journal of Proteome Research, 8, 1577-1584. https://doi.org/10.1021/pr800957q
|
[194]
|
Chou, K.C. (2001) Prediction of Protein Signal Sequences and Their Cleavage Sites. Proteins: Structure, Function and Genetics, 42, 136-139.
https://doi.org/10.1002/1097-0134(20010101)42:1<136::AID-PROT130>3.0.CO;2-F
|
[195]
|
Chou, K.C. (2001) Using Subsite Coupling to Predict Signal Peptides. Protein Engineering, 14, 75-79.
https://doi.org/10.1093/protein/14.2.75
|
[196]
|
Chou, K.C. (2001) Prediction of Signal Peptides Using Scaled Window. Peptides, 22, 1973-1979.
https://doi.org/10.1016/S0196-9781(01)00540-X
|
[197]
|
Qiu, W.R., Xiao, X. and Chou, K.C. (2014) iRSpot-TNCPseAAC: Identify Recombination Spots with Trinucleotide Composition and Pseudo Amino Acid Components. International Journal of Molecular Sciences, 15, 1746-1766. https://doi.org/10.3390/ijms15021746
|
[198]
|
Xu, Y., Wen, X., Wen, L.S., Wu, L.Y., Deng, N.Y. and Chou, K.C. (2014) iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition. PLoS ONE, 9, e105018.
https://doi.org/10.1371/journal.pone.0105018
|
[199]
|
Chen, W., Feng, P., Ding, H., Lin, H. and Chou, K.C. (2015) iRNA-methyl: Identifying N6-Methyladenosine Sites Using Pseudo Nucleotide Composition. Analytical Biochemistry, 490, 26-33.
https://doi.org/10.1016/j.ab.2015.08.021
|
[200]
|
Jia, J., Liu, Z., Xiao, X. and Chou, K.C. (2015) iPPI-Esml: An Ensemble Classifier for Identifying the Interactions of Proteins by Incorporating Their Physicochemical Properties and Wavelet Transforms into PseAAC. Journal of Theoretical Biology, 377, 47-56. https://doi.org/10.1016/j.jtbi.2015.04.011
|
[201]
|
Chen, W., Ding, H., Feng, P., Lin, H. and Chou, K.C. (2016) iACP: A Sequence-Based Tool for Identifying Anticancer Peptides. Oncotarget, 7, 16895-16909. https://doi.org/10.18632/oncotarget.7815
|
[202]
|
Chen, W., Feng, P., Ding, H., Lin, H. and Chou, K.C. (2016) Using Deformation Energy to Analyze Nucleosome Positioning in Genomes. Genomics, 107, 69-75. https://doi.org/10.1016/j.ygeno.2015.12.005
|
[203]
|
Jia, J., Liu, Z., Xiao, X., Liu, B. and Chou, K.C. (2016) pSuc-Lys: Predict Lysine Succinylation Sites in Proteins with PseAAC and Ensemble Random Forest Approach. Journal of Theoretical Biology, 394, 223-230.
https://doi.org/10.1016/j.jtbi.2016.01.020
|
[204]
|
Chou, K.C. and Zhang, C.T. (1995) Review: Prediction of Protein Structural Classes. Critical Reviews in Biochemistry and Molecular Biology, 30, 275-349. https://doi.org/10.3109/10409239509083488
|
[205]
|
Zhou, G.P. and Assa-Munt, N. (2001) Some Insights into Protein Structural Class Prediction. Proteins: Structure, Function and Genetics, 44, 57-59. https://doi.org/10.1002/prot.1071
|
[206]
|
Zhou, G.P. and Doctor, K. (2003) Subcellular Location Prediction of Apoptosis Proteins. Proteins: Structure, Function and Genetics, 50, 44-48. https://doi.org/10.1002/prot.10251
|
[207]
|
Khan and Zia-ur-Rehman, A. (2012) Identifying GPCRs and Their Types with Chou’s Pseudo Amino Acid Composition: An Approach from Multi-Scale Energy Representation and Position Specific Scoring Matrix. Protein & Peptide Letters, 19, 890-903. https://doi.org/10.2174/092986612801619589
|
[208]
|
Huang, C. and Yuan, J.Q. (2013) Predicting Protein Subchloroplast Locations with Both Single and Multiple Sites via Three Different Modes of Chou’s Pseudo Amino Acid Compositions. Journal of Theoretical Biology, 335, 205-212. https://doi.org/10.1016/j.jtbi.2013.06.034
|
[209]
|
Chou, K.C. and Shen, H.B. (2009) Recent Advances in Developing Web-Servers for Predicting Protein Attributes. Natural Sciences, 1, 63-92. https://doi.org/10.4236/ns.2009.12011
|
[210]
|
Xu, Y., Shao, X.J., Wu, L.Y., Deng, N.Y. and Chou, K.C. (2013) iSNO-AAPair: Incorporating Amino Acid Pairwise Coupling into PseAAC for Predicting Cysteine S-Nitrosylation Sites in Proteins. PeerJ, 1, e171.
https://doi.org/10.7717/peerj.171
|
[211]
|
Liu, B., Xu, J., Lan, X., Xu, R., Zhou, J., Wang, X. and Chou, K.C. (2014) iDNA-Protdis: Identifying DNA-Binding Proteins by Incorporating Amino Acid Distance-Pairs and Reduced Alphabet Profile into the General Pseudo Amino Acid Composition. PLoS ONE, 9, e106691. https://doi.org/10.1371/journal.pone.0106691
|
[212]
|
Xu, Y., Wen, X., Shao, X.J., Deng, N.Y. and Chou, K.C. (2014) iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition. International Journal of Molecular Sciences, 15, 7594-7610. https://doi.org/10.3390/ijms15057594
|
[213]
|
Qiu, W.R., Xiao, X., Lin, W.Z. and Chou, K.C. (2014) iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach. BioMed Research International, 2014, Article ID: 947416. https://doi.org/10.1155/2014/947416
|
[214]
|
Fan, Y.N., Xiao, X., Min, J.L. and Chou, K.C. (2014) iNR-Drug: Predicting the Interaction of Drugs with Nuclear Receptors in Cellular Networking. International Journal of Molecular Sciences, 15, 4915-4937.
https://doi.org/10.3390/ijms15034915
|
[215]
|
Guo, S.H., Deng, E.Z., Xu, L.Q., Ding, H., Lin, H., Chen, W. and Chou, K.C. (2014) iNuc-PseKNC: A Sequence-Based Predictor for Predicting Nucleosome Positioning in Genomes with Pseudo k-Tuple Nucleotide Composition. Bioinformatics, 30, 1522-1529. https://doi.org/10.1093/bioinformatics/btu083
|
[216]
|
Qiu, W.R., Xiao, X., Lin, W.Z. and Chou, K.C. (2015) iUbiq-Lys: Prediction of Lysine Ubiquitination Sites in Proteins by Extracting Sequence Evolution Information via a Grey System Model. Journal of Biomolecular Structure and Dynamics, 33, 1731-1742. https://doi.org/10.1080/07391102.2014.968875
|
[217]
|
Liu, B., Fang, L., Li, F.U., Wang, X., Chen, J. and Chou, K.C. (2015) Identification of Real microRNA Precursors with a Pseudo Structure Status Composition Approach. PLoS ONE, 10, e0121501.
https://doi.org/10.1371/journal.pone.0121501
|
[218]
|
Liu, Z., Xiao, X., Yu, D.J., Jia, J., Qiu, W.R. and Chou, K.C. (2016) pRNAm-PC: Predicting N-Methyladenosine Sites in RNA Sequences via Physical-Chemical Properties. Analytical Biochemistry, 497, 60-67.
https://doi.org/10.1016/j.ab.2015.12.017
|
[219]
|
Xiao, X., Ye, H.X., Liu, Z., Jia, J.H. and Chou, K.C. (2016) iROS-gPseKNC: Predicting Replication Origin Sites in DNA by Incorporating Dinucleotide Position-Specific Propensity into General Pseudo Nucleotide Composition. Oncotarget, 7, 34180-34189. https://doi.org/10.18632/oncotarget.9057
|
[220]
|
Qiu, W.R., Sun, B.Q., Xiao, X., Xu, Z.C. and Chou, K.C. (2016) iPTM-mLys: Identifying Multiple Lysine PTM Sites and Their Different Types. Bioinformatics, 32, 3116-3123. https://doi.org/10.1093/bioinformatics/btw380
|
[221]
|
Jia, J., Liu, Z., Xiao, X., Liu, B. and Chou, K.C. (2016) iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets. Molecules, 21, E95.
https://doi.org/10.3390/molecules21010095
|
[222]
|
Qiu, W.R., Xiao, X., Xu, Z.C. and Chou, K.C. (2016) iPhos-PseEn: Identifying Phosphorylation Sites in Proteins by Fusing Different Pseudo Components into an Ensemble Classifier. Oncotarget, 7, 51270-51283.
https://doi.org/10.18632/oncotarget.9987
|
[223]
|
Zhang, C.J., Tang, H., Li, W.C., Lin, H., Chen, W. and Chou, K.C. (2016) iOri-Human: Identify Human Origin of Replication by Incorporating Dinucleotide Physicochemical Properties into Pseudo Nucleotide Composition. Oncotarget, 7, 69783-69793. https://doi.org/10.18632/oncotarget.11975
|
[224]
|
Liu, B., Fang, L., Li, F.U., Wang, X. and Chou, K.C. (2016) iMiRNA-PseDPC: microRNA Precursor Identification with a Pseudo Distance-Pair Composition Approach. Journal of Biomolecular Structure and Dynamics, 34, 223-235. https://doi.org/10.1080/07391102.2015.1014422
|
[225]
|
Qiu, W.R., Sun, B.Q., Xiao, X., Xu, Z.C. and Chou, K.C. (2016) iHyd-PseCp: Identify Hydroxyproline and Hydroxylysine in Proteins by Incorporating Sequence-Coupled Effects into General PseAAC. Oncotarget, 7, 44310-44321. https://doi.org/10.18632/oncotarget.10027
|
[226]
|
Jia, J., Liu, Z., Xiao, X., Liu, B. and Chou, K.C. (2016) Identification of Protein-Protein Binding Sites by Incorporating the Physicochemical Properties and Stationary Wavelet Transforms into Pseudo Amino Acid Composition (iPPBS-PseAAC). Journal of Biomolecular Structure and Dynamics, 34, 1946-1961.
https://doi.org/10.1080/07391102.2015.1095116
|
[227]
|
Jia, J., Liu, Z., Xiao, X., Liu, B. and Chou, K.C. (2016) iCar-PseCp: Identify Carbonylation Sites in Proteins by Monto Carlo Sampling and Incorporating Sequence Coupled Effects into General PseAAC. Oncotarget, 7, 34558-34570. https://doi.org/10.18632/oncotarget.9148
|
[228]
|
Chen, J., Long, R., Wang, X.L., Liu, B. and Chou, K.C. (2016) dRHP-PseRA: Detecting Remote Homology Proteins Using Profile-Based Pseudo Protein Sequence and Rank Aggregation. Scientific Reports, 6, Article No. 32333. https://doi.org/10.1038/srep32333
|
[229]
|
Liu, B., Wu, H., Zhang, D., Wang, X. and Chou, K.C. (2017) Pse-Analysis: A Python Package for DNA/RNA and Protein/Peptide Sequence Analysis Based on Pseudo Components and Kernel Methods. Oncotarget, 8, 13338-13343. https://doi.org/10.18632/oncotarget.14524
|
[230]
|
Qiu, W.R., Jiang, S.Y., Xu, Z.C., Xiao, X. and Chou, K.C. (2017) iRNAm5C-PseDNC: Identifying RNA 5-Methylcytosine Sites by Incorporating Physical-Chemical Properties into Pseudo Dinucleotide Composition. Oncotarget, 8, 41178-41188. https://doi.org/10.18632/oncotarget.17104
|
[231]
|
Qiu, W.R., Jiang, S.Y., Sun, B.Q., Xiao, X., Cheng, X. and Chou, K.C. (2017) iRNA-2methyl: Identify RNA 2’-O-Methylation Sites by Incorporating Sequence-Coupled Effects into General PseKNC and Ensemble Classifier. Medicinal Chemistry, 13, 734-743. https://doi.org/10.2174/1573406413666170623082245
|
[232]
|
Xu, Y., Li, C. and Chou, K.C. (2017) iPreny-PseAAC: Identify C-Terminal Cysteine Prenylation Sites in Proteins by Incorporating Two Tiers of Sequence Couplings into PseAAC. Medicinal Chemistry, 13, 544-551.
https://doi.org/10.2174/1573406413666170419150052
|
[233]
|
Qiu, W.R., Sun, B.Q., Xiao, X., Xu, D. and Chou, K.C. (2017) iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory. Molecular Informatics, 36, UNSP 1600010. https://doi.org/10.1002/minf.201600010
|
[234]
|
Li, L., Xu, Y. and Chou, K.C. (2017) iPGK-PseAAC: Identify Lysine Phosphoglycerylation Sites in Proteins by Incorporating Four Different Tiers of Amino Acid Pairwise Coupling Information into the General PseAAC. Medicinal Chemistry, 13, 552-559. https://doi.org/10.2174/1573406413666170515120507
|
[235]
|
Cheng, X., Zhao, S.G., Xiao, X. and Chou, K.C. (2017) iATC-mISF: A Multi-Label Classifier for Predicting the Classes of Anatomical Therapeutic Chemicals. Bioinformatics, 33, 341-346. (Corrigendum, ibid., 2017, Vol. 33, 2610) https://doi.org/10.1093/bioinformatics/btx387
|
[236]
|
Cheng, X., Zhao, S.G., Xiao, X. and Chou, K.C. (2017) iATC-mHyb: A Hybrid Multi-Label Classifier for Predicting the Classification of Anatomical Therapeutic Chemicals. Oncotarget, 8, 58494-58503.
https://doi.org/10.18632/oncotarget.17028
|
[237]
|
Wang, J., Yang, B., Leier, A., Marquez-Lago, T.T., Hayashida, M., Rocker, A., Yanju, Z., Akutsu, T., Chou, K.C., Strugnell, R.A., Song, J. and Lithgow, T. (2018) Bastion6: A Bioinformatics, Approach for Accurate Prediction of Type VI Secreted Effectors. Bioinformatics, 34, 2546-2555. https://doi.org/10.1093/bioinformatics/bty155
|
[238]
|
Liu, B., Li, K., Huang, D.S. and Chou, K.C. (2018) iEnhancer-EL: Identifying Enhancers and Their Strength with Ensemble Learning Approach. Bioinformatics, 34, 3835-3842. https://doi.org/10.1093/bioinformatics/bty458
|
[239]
|
Chen, Z., Zhao, P.Y., Li, F., Leier, A., Marquez-Lago, T.T., Wang, Y., Webb, G.I., Smith, A.I., Daly, R.J., Chou, K.C. and Song, J. (2018) iFeature: A Python Package and Web Server for Features Extraction and Selection from Protein and Peptide Sequences. Bioinformatics, 34, 2499-2502. https://doi.org/10.1093/bioinformatics/bty140
|
[240]
|
Su, Z.D., Huang, Y., Zhang, Z.Y., Zhao, Y.W., Wang, D., Chen, W., Chou, K.C. and Lin, H. (2018) iLoc-lncRNA: Predict the Subcellular Location of lncRNAs by Incorporating Octamer Composition into General PseKNC. Bioinformatics, 34, 4196-4204.
|
[241]
|
Liu, B., Yang, F., Huang, D.S. and Chou, K.C. (2018) iPromoter-2L: A Two-Layer Predictor for Identifying Promoters and Their Types by Multi-Window-Based PseKNC. Bioinformatics, 34, 33-40.
https://doi.org/10.1093/bioinformatics/btx579
|
[242]
|
Liu, B., Weng, F., Huang, D.S. and Chou, K.C. (2018) iRO-3wPseKNC: Identify DNA Replication Origins by Three-Window-Based PseKNC. Bioinformatics, 34, 3086-3093. https://doi.org/10.1093/bioinformatics/bty312
|
[243]
|
Yang, H., Qiu, W.R., Liu, G., Guo, F.B., Chen, W., Chou, K.C. and Lin, H. (2018) iRSpot-Pse6NC: Identifying Recombination Spots in Saccharomyces cerevisiae by Incorporating Hexamer Composition into General PseKNC. International Journal of Biological Sciences, 14, 883-891. https://doi.org/10.7150/ijbs.24616
|
[244]
|
Song, J., Li, F., Leier, A., Marquez-Lago, T.T., Akutsu, T., Haffari, G., Chou, K.C., Webb, G.I. and Pike, R.N. (2018) PROSPERous: High-Throughput Prediction of Substrate Cleavage Sites for 90 Proteases with Improved Accuracy. Bioinformatics, 34, 684-687. https://doi.org/10.1093/bioinformatics/btx670
|
[245]
|
Chou, K.C. (2005) Review: Progress in Protein Structural Class Prediction and Its Impact to Bioinformatics, and Proteomics. Current Protein & Peptide Science, 6, 423-436. https://doi.org/10.2174/138920305774329368
|
[246]
|
Zhong, W.Z. and Zhou, S.F. (2014) Molecular Science for Drug Development and Biomedicine. International Journal of Molecular Sciences, 15, 20072-20078. https://doi.org/10.3390/ijms151120072
|
[247]
|
Du, Q.S., Huang, R.B., Wang, S.Q. and Chou, K.C. (2010) Designing Inhibitors of M2 Proton Channel against H1N1 Swine Influenza Virus. PLoS ONE, 5, e9388. https://doi.org/10.1371/journal.pone.0009388
|
[248]
|
Wang, S.Q., Cheng, X.C., Dong, W.L., Wang, R.L. and Chou, K.C. (2010) Three New Powerful Oseltamivir Derivatives for Inhibiting the Neuraminidase of Influenza Virus. Biochemical and Biophysical Research Communications, 401, 188-191. https://doi.org/10.1016/j.bbrc.2010.09.020
|
[249]
|
Li, X.B., Wang, S.Q., Xu, W.R., Wang, R.L. and Chou, K.C. (2011) Novel Inhibitor Design for Hemagglutinin against H1N1 Influenza Virus by Core Hopping Method. PLoS ONE, 6, e28111.
https://doi.org/10.1371/journal.pone.0028111
|
[250]
|
Ma, Y., Wang, S.Q., Xu, W.R., Wang, R.L. and Chou, K.C. (2012) Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach. PLoS ONE, 7, e38546. https://doi.org/10.1371/journal.pone.0038546
|
[251]
|
Liu, L., Ma, Y., Wang, R.L., Xu, W.R., Wang, S.Q. and Chou, K.C. (2013) Find Novel Dual-Agonist Drugs for Treating Type 2 Diabetes by Means of Cheminformatics. Drug Design, Development and Therapy, 7, 279-287.
https://doi.org/10.2147/DDDT.S42113
|
[252]
|
Lu, J.J., Pan, W., Hu, Y.J. and Wang, Y.T. (2012) Multi-Target Drugs: The Trend of Drug Research and Development. PLoS ONE, 7, e40262. https://doi.org/10.1371/journal.pone.0040262
|
[253]
|
Chou, K.C. and Forsen, S. (1980) Diffusion-Controlled Effects in Reversible Enzymatic Fast Reaction System: Critical Spherical Shell and Proximity Rate Constants. Biophysical Chemistry, 12, 255-263.
https://doi.org/10.1016/0301-4622(80)80002-0
|
[254]
|
Chou, K.C., Li, T.T. and Forsen, S. (1980) The Critical Spherical Shell in Enzymatic Fast Reaction Systems. Biophysical Chemistry, 12, 265-269. https://doi.org/10.1016/0301-4622(80)80003-2
|
[255]
|
Li, T.T., Chou, K.C. and Forsen, S. (1980) The Flow of Substrate Molecules in Fast Enzyme-Catalyzed Reaction Systems. Chemica Scripta, 16, 192-196.
|
[256]
|
Chou, K.C. and Forsen, S. (1980) Graphical Rules for Enzyme-Catalyzed Rate Laws. Biochemical Journal, 187, 829-835. https://doi.org/10.1042/bj1870829
|
[257]
|
Chou, K.C., Forsen, S. and Zhou, G.Q. (1980) Three Schematic Rules for Deriving Apparent Rate Constants. Chemica Scripta, 16, 109-113.
|
[258]
|
Chou, K.C., Carter, R.E. and Forsen, S. (1981) A New Graphical Method for Deriving Rate Equations for Complicated Mechanisms. Chemica Scripta, 18, 82-86.
|
[259]
|
Chou, K.C. and Forsen, S. (1981) Graphical Rules of Steady-State Reaction Systems. Canadian Journal of Chemistry, 59, 737-755. https://doi.org/10.1139/v81-107
|
[260]
|
Chou, K.C., Chen, N.Y. and Forsen, S. (1981) The Biological Functions of Low-Frequency Phonons: 2. Cooperative Effects. Chemica Scripta, 18, 126-132.
|
[261]
|
Chou, K.C., Jiang, S.P., Li, W. and Fee, C.H. (1979) Graph Theory of Enzyme Kinetics: 1. Steady-State Reaction System. Scientia Sinica, 22, 341-358.
|
[262]
|
Zhou, G.P. and Deng, M.H. (1984) An Extension of Chou’s Graphic Rules for Deriving Enzyme Kinetic Equations to Systems Involving Parallel Reaction Pathways. Biochemical Journal, 222, 169-176.
https://doi.org/10.1042/bj2220169
|
[263]
|
Chou, K.C. (1989) Graphic Rules in Steady and Non-Steady Enzyme Kinetics. The Journal of Biological Chemistry, 264, 12074-12079.
|
[264]
|
Chou, K.C. (1990) Review: Applications of Graph Theory to Enzyme Kinetics and Protein Folding Kinetics. Steady and Non-Steady State Systems. Biophysical Chemistry, 35, 1-24.
https://doi.org/10.1016/0301-4622(90)80056-D
|
[265]
|
Althaus, I.W., Chou, J.J., Gonzales, A.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G. and Reusser, F. (1993) Steady-State Kinetic Studies with the Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitor U-87201E. The Journal of Biological Chemistry, 268, 6119-6124.
|
[266]
|
Althaus, I.W., Gonzales, A.J., Chou, J.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G. and Reusser, F. (1993) The Quinoline U-78036 Is a Potent Inhibitor of HIV-1 Reverse Transcriptase. The Journal of Biological Chemistry, 268, 14875-14880.
|
[267]
|
Althaus, I.W., Chou, J.J., Gonzales, A.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G. and Reusser, F. (1993) Kinetic Studies with the Nonnucleoside HIV-1 Reverse Transcriptase Inhibitor U-88204E. Biochemistry, 32, 6548-6554. https://doi.org/10.1021/bi00077a008
|
[268]
|
Althaus, I.W., Chou, J.J., Gonzales, A.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G. and Reusser, F. (1994) Steady-State Kinetic Studies with the Polysulfonate U-9843, an HIV Reverse Transcriptase Inhibitor. Cellular and Molecular Life Sciences (Experientia), 50, 23-28.
https://doi.org/10.1007/BF01992044
|
[269]
|
Althaus, I.W., Chou, J.J., Gonzales, A.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Thomas, R.C., Aristoff, P.A., Tarpley, W.G. and Reusser, F. (1994) Kinetic Studies with the Non-Nucleoside Human Immunodeficiency Virus Type-1 Reverse Transcriptase Inhibitor U-90152e. Biochemical Pharmacology, 47, 2017-2028.
https://doi.org/10.1016/0006-2952(94)90077-9
|
[270]
|
Chou, K.C., Kezdy, F.J. and Reusser, F. (1994) Review: Kinetics of Processive Nucleic Acid Polymerases and Nucleases. Analytical Biochemistry, 221, 217-230. https://doi.org/10.1006/abio.1994.1405
|
[271]
|
Althaus, I.W., Chou, K.C., Franks, K.M., Diebel, M.R., Kezdy, F.J., Romero, D.L., Thomas, R.C., Aristoff, P.A., Tarpley, W.G. and Reusser, F. (1996) The Benzylthio-Pyrididine U-31,355, a Potent Inhibitor of HIV-1 Reverse Transcriptase. Biochemical Pharmacology, 51, 743-750. https://doi.org/10.1016/0006-2952(95)02390-9
|
[272]
|
Andraos, J. (2008) Kinetic Plasticity and the Determination of Product Ratios for Kinetic Schemes Leading to Multiple Products without Rate Laws: New Methods Based on Directed Graphs. Canadian Journal of Chemistry, 86, 342-357. https://doi.org/10.1139/v08-020
|
[273]
|
Chou, K.C. and Shen, H.B. (2009) FoldRate: A Web-Server for Predicting Protein Folding Rates from Primary Sequence. The Open Bioinformatics Journal, 3, 31-50. https://doi.org/10.2174/1875036200903010031
|
[274]
|
Shen, H.B., Song, J.N. and Chou, K.C. (2009) Prediction of Protein Folding Rates from Primary Sequence by Fusing Multiple Sequential Features. Journal of Biomedical Science and Engineering, 2, 136-143.
https://doi.org/10.4236/jbise.2009.23024
|
[275]
|
Chou, K.C. (2010) Graphic Rule for Drug Metabolism Systems. Current Drug Metabolism, 11, 369-378.
https://doi.org/10.2174/138920010791514261
|
[276]
|
Chou, K.C., Lin, W.Z. and Xiao, X. (2011) Wenxiang: A Web-Server for Drawing Wenxiang Diagrams. Natural Sciences, 3, 862-865. https://doi.org/10.4236/ns.2011.310111
|
[277]
|
Zhou, G.P. (2011) The Disposition of the LZCC Protein Residues in Wenxiang Diagram Provides New Insights into the Protein-Protein Interaction Mechanism. Journal of Theoretical Biology, 284, 142-148.
https://doi.org/10.1016/j.jtbi.2011.06.006
|
[278]
|
Chou, K.C. (2019) Proposing Pseudo Amino Acid Components Is an Important Milestone for Proteome and Genome Analyses. International Journal of Peptide Research and Therapeutics (IJPRT), No. 2, 1085-1098.
https://doi.org/10.1007/s10989-019-09910-7
|
[279]
|
Chou, K.C. (2019) Impacts of Pseudo Amino Acid Components and 5-Steps Rule to Proteomics and Proteome Analysis. Current Topics Medicinal Chemistry, 19, 2283-2300.
https://doi.org/10.2174/1568026619666191018100141
|
[280]
|
Chou, K.C. (2019) An Insightful 10-Year Recollection since the Emergence of the 5-Steps Rule. Current Pharmaceutical Design, 25, 4223-4234. https://doi.org/10.2174/1381612825666191129164042
|
[281]
|
Chou, K.C. (2019) An Insightful 20-Year Recollection since the Birth of Pseudo Amino Acid Components. Applied Biochemistry and Biotechnology (ABAB). (In Press) https://doi.org/10.1007/s00726-020-02828-1
|
[282]
|
Chou, K.C. (2019) An Insightful Recollection since the Birth of Gordon Life Science Institute about 17 Years Ago. Advancement in Scientific and Engineering Research, 4, 17-30. https://doi.org/10.33495/aser_v4i2.19.105
|
[283]
|
Chou, K.C. (2019) An Insightful Recollection since the Distorted Key Theory Was Born about 23 Years Ago. International Journal of Peptide Research and Therapeutics (IJPRT). (In Press)
https://doi.org/10.1016/j.ygeno.2019.09.001
|
[284]
|
Chou, K.C. (2019) Recent Progresses in Predicting Protein Subcellular Localization with Artificial Intelligence Tools Developed via the 5-Steps Rule. Genomics. (In Press)
|
[285]
|
Chou, K.C. (2019) Two Kinds of Metrics for Computational Biology. Genomics. (In Press)
|