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ABSTRACT 
A systematic introduction has been presented for the recent advances in predicting protein 
subcellular localization in the multi-label systems, where the constituent proteins may si-
multaneously occur or move between two or more location sites and hence have exceptional 
biological functions worthy of our special notice. All the predictors included in this review 
each have a user-friendly web-server, by which the majority of experimental scientists can 
very easily acquire their desired data without the need to go through the complicated ma-
thematics involved. 

 

1. INTRODUCTION 
As elucidated in two recent comprehensive review papers [1, 2], to develop a really useful bioinfor-

matics tool, one needs to observe the guidelines of the Chou’s 5-steps rule [2-36] to go through the fol-
lowing five steps: 1) select or construct a valid benchmark dataset to train and test the predictor; 2) 
represent the samples with an effective formulation that can truly reflect their intrinsic correlation with the 
target to be predicted; 3) introduce or develop a powerful algorithm to conduct the prediction; 4) properly 
perform cross-validation tests to objectively evaluate the anticipated prediction accuracy; 5) establish a 
user-friendly web-server for the predictor that is accessible to the public. The bioinformatics or computa-
tional tool established by observing the guidelines of Chou’s 5-step rules have the following remarkable 
merits: a) crystal clear in logic development, b) completely transparent in operation, c) easily to repeat the 
reported results by other investigators, d) with high potential in stimulating other new bioinformatics 
tools, and e) very convenient to be used by the majority of experimental scientists. As for more about the 
importance of the 5-steps rule, see an insightful Wikipedia article at  
https://en.wikipedia.org/wiki/5-step_rules. It is instructive to point out that, although the present minire-
view was focused on the recent development in subcellular prediction for the multi-label proteins [37, 38], 
the 5-steps rule can also be used to deal with many different systems, such as those in material science [39] 
and even those in commercial science (e.g., analyzing the effect of bank credit card versus mobile pay-
ment). The only difference between the biological systems and other disciplines’ systems is how to formu-
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late the statistical samples or events with an effective mathematical expression that can truly reflect their 
intrinsic correlation with the target to be predicted. This is just like the case of many machine-learning 
algorithms. They can be used in nearly all the areas of statistical analysis. 

2. PREDICTING SUBCELLULAR LOCALIZATION OF PROTEINS 
The smallest unit of life is a cell, which contains numerous protein molecules. Most of the functions 

critical to the cell’s survival are performed by these proteins located in its different organelles, usually 
called “subcellular locations” (Figure 1). Information of subcellular localization for a protein can provide 
useful clues about its function. To reveal the intricate pathways at the cellular level, knowledge of the sub-
cellular localization of proteins in a cell is prerequisite. Unfortunately, it is both time-consuming and cost-
ly to determine the subcellular locations of proteins purely based on experiments. With the avalanche of 
protein sequences generated in the post-genomic age, it is highly desired to develop computational tools 
for rapidly and effectively identifying the subcellular locations of uncharacterized proteins based on their 
sequences information alone. The demand has become even more challenging owing to the fact that many 
protein molecules may simultaneously exist or move between two or more subcellular location sites [40]. 
Actually, it is these multiplex proteins that are of significance for in-depth understanding the biological 
processes in a living cell. 

3. FOUR SERIES OF PREDICTORS 
In the last decade or so, a number of predictors were developed for predicting the subcellular localiza-

tion of proteins with both single site and multiple sites based on their sequences information alone. They 
can be generally classified into four series: 1) -mPLoc, 2) iLoc , 3) pLoc-m , and 4) pLoc_bal-m , 
where the wildcard may denote “Euk” (eukaryotic), “Hum” (human), “Animal”, “Plant”, “Virus”, “Gneg”  
 

 
Figure 1. Schematic illustration to show the 22 organelles or subcellular locations in an eukaryotic 
cell. Adapted from Chou and Shen with permission [189]. 
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(Gram-negative bacterial), “Gpos” (Gram-positive bacterial) proteins, respectively, as formulated by 
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The protein samples in the -mPLoc series [41-46] were formulated by hybridizing the GO (Gene 
Ontology) information, FunD (Functional Domain) information, and PSSM (Sequential Evolutionary) 
information into the general PseAAC [3], which was extended from pseudo amino acid composition [47, 
48]. 

The protein samples in the iLoc- series [49-55] were formulated by incorporating the GO informa-
tion and PSSM information into the general PseAAC. 

The protein samples in the pLoc-m series [56-62] were formulated by extracting the key or optimal 
GO information into the general PseAAC. 

The protein samples in the pLoc_bal-m series [2, 26, 29, 63-65] were formulated by further balanc-
ing out the protein samples used in pLoc-m series. 

As for the justification of using the GO information for predicting the subcellular localization of pro-
teins, see Section 4 of a review paper [66], where an insightful analysis has been elaborated and there is no 
need to repeat here. 

3.1. Benchmark Dataset 

All the predictors in the above four series were developed based on a very stringent benchmark data-
set in which none of proteins had ≥25% pairwise sequence identity to any other in a same subset. But such 
a strict cutoff treatment was not imposed for the protein sequences in the “viral capsid” subset because 
otherwise it would contain too few proteins to be of statistical significance as explained in [46]. 

3.2. Sample Formulation 

The most straightforward expression for a protein sample is its sequential model as given by 

1 2 3 4 5 6 7R R R R R R R R L= P                              (2) 

where L denotes the protein’s length or the number of its constituent amino acid residues, R1 is the 1st re-
sidue, R2 the 2nd residue, R3 the 3rd residue, and so forth. Since all the existing machine-learning algorithms 
(e.g., “Support Vector Machine” or SVM algorithm [4, 5], “Covariance Discriminant” or CD algorithm 
[67-69], “Nearest Neighbor” or NN algorithm [70, 71], and “Random Forest” or RF algorithm [72, 73]) 
can only handle vectors as elaborated in [74], we have to convert the sequential expression of Equation (2) 
into a vector. But a vector defined in a discrete model might completely lose all the sequence order or pat-
tern information. To deal with this problem, the concept of PseAAC (Pseudo Amino Acid Composition) 
was introduced [47, 48]. Ever since then, the concept of PseAAC has been widely used in nearly all the 
areas of computational proteomics with the aim to grasp various different sequence patterns that are es-
sential to the targets investigated (see, e.g., [20, 21, 28, 75-170] as well as a long list of references cited in 
[171]). Because it has been widely and increasingly used, four powerful open access soft-wares, called 
“PseAAC” [172], “PseAAC-Builder” [88], “propy” [98], and “PseAAC-General” [109], were established: 
the former three are for generating various modes of special PseAAC [173]; while the fourth one for those 
of general PseAAC [3], including not only all the special modes of feature vectors for proteins but also the 
higher level feature vectors such as “Functional Domain” or “FunD” mode, “Gene Ontology” or “GO” 
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mode, and “Sequential Evolution” or “PSSM” [174] mode. Encouraged by the successes of using PseAAC 
to deal with protein/peptide sequences, its idea and approach were extended to PseKNC (Pseudo K-tuple 
Nucleotide Composition) to generate various feature vectors for DNA/RNA sequences [175-178] that have 
proved very successful as well [14, 179-190]. According to the concept of general PseAAC [3], any protein 
sequence can be formulated as a PseAAC vector given by 

[ ]1 2                   u Ω= Ψ Ψ Ψ Ψ 

TP                             (3) 

where T is a transpose operator, while the integer Ω is a parameter and its value as well as the components 
( )1,2, ,u uΨ = Ω  will depend on how to extract the desired information from the amino acid sequence 

of P. 

3.3. Operation Engine 

The operation engine for -mPLoc series was constructed by fusing an array of OET-KNN (Opti-
mized Evidence-Theoretic K-Nearest Neighbor) classifiers [191-193]. 

The operation engine for iLoc- series was the multi-labeled KNN (K-Nearest Neighbor) classifier 
[49]. 

The operation engine for the pLoc-m and pLoc_bal-m series was the ML-GKR (multi-label Gaus-
sian kernel regression) classifier [56]. 

3.3.1. Metrics and Cross-Validation 
In order to objectively evaluate the prediction quality of a multi-label predictor, one needs to consider 

the following two issues. 1) What metrics should be used to quantitatively reflect its accuracy? 2) What test 
approach should be adopted to score the metrics? 

Quite different from the metrics used to measure the prediction quality of a single-label predictor, the 
metrics for a multi-label predictor are much more complicated. To quantitatively evaluate the power of a 
multi-label predictor, we need to use two sets of metrics: one for its global accuracy and the other for its 
local accuracy. 

The global accuracy is defined by a set of five metrics as given in [66] 
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where Nq is the total number of query proteins or tested proteins, M is the total number of different labels 
for the investigated system, || || means the operator acting on the set therein to count the number of its 
elements,   means the symbol for the “union” in the set theory,   denotes the symbol for the “inter-
section”, k  denotes the subset that contains all the labels observed by experiments for the k-th tested 
sample, represents the subset that contains all the labels predicted for the k-th sample, and *

k  represents 
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the subset that contains all the labels predicted for the k-th sample, and 

( )
*

* 1, if all the labels in are identical to those in
Δ ,

0, otherwise
k k

k k
= 


                  (5) 

In Equation (4), the first four metrics with an upper arrow ↑ are called positive metrics, meaning 
that the larger the rate is the better the prediction quality will be; the 5th metrics with a down arrow is 
called negative metrics, implying just the opposite meaning. As we can see from Equation (5): 1) the 
“Aiming” defined by the 1st sub-equation is for checking the rate or percentage of the correctly predicted 
labels over the practically predicted labels; 2) the “Coverage” defined in the 2nd sub-equation is for check-
ing the rate of the correctly predicted labels over the actual labels in the system concerned; 3) the “Accu-
racy” in the 3rd sub-equation is for checking the average ratio of correctly predicted labels over the total 
labels including correctly and incorrectly predicted labels as well as those real labels but are missed in the 
prediction; 4) the “Absolute true” in the 4th sub-equation is for checking the ratio of the perfectly or com-
pletely correct prediction events over the total prediction events; 5) the “Absolute false” in the 5th 
sub-equation is for checking the ratio of the completely wrong prediction over the total prediction events. 

The five metrics in Equation (4) reflect the quality of a multi-label predictor from five different angles 
at the global level. It is instructive to point out, however, among the five global metrics the most important 
one and also the most difficult to improve its success rate is the “Absolute true” or “perfectly correct” rate 
[66]. Why? This is because the score standard for the absolute true rate is very harsh. According to its de-
finition, for a protein sample that is actually simultaneously located at the subcellular locations (“A”, “B”, 
“C”). If the predicted result is not exactly the three locations but (“A”, “B”) or (“A”, “B”, “C”, “D”), no 
score whatsoever will be given. In other words, when and only when the predicted localization for the 
protein sample is perfectly identical to its actual localization, can we add one point for the absolute true 
rate; otherwise, zero. 

The set of metrics in Equation (4) are used to evaluate the prediction quality of a multi-label predictor 
for all the proteins in the entire cell, and hence is called the “set of metrics for the global accuracy” or the 
“set of global metrics”. 

To evaluate the local accuracy of a multi-label predictor, we use a set of Chou’s four intuitive metrics 
that were derived by Chou et al. [4, 69] based on the symbols introduced by Chou [194-196] for studying 
the cleavage sites of signal peptides. The set of metrics are given below 
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where Sn, Sp, Acc, and MCC represent the sensitivity, specificity, accuracy, and Mathew’s correlation coef-
ficient, respectively [15], i denotes the i-th subcellular location (or subset) in the benchmark dataset, and 
M has exactly the same meaning as in Equation (5). N+(i) is the total number of the samples investigated in 
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the i-th subset, whereas ( )N i+
−  is the number of the samples in N+(i) that are incorrectly predicted to be 

of other locations; N−(i) is the total number of samples in any location but not the i-th location, whereas 
( )N i−

+  is the number of the samples in N−(i) that are incorrectly predicted to be of the i-th location. 
In addition to being widely used in proteome and genome analyses (see, e.g., [6, 8, 10, 13, 15, 33, 36, 

180, 181, 185, 197-203]), the set of metrics in Equation (6) can be used to evaluate the prediction quality of 
a multi-label predictor for the proteins in each of subcellular locations concerned (see, e.g., [58, 62]), and 
hence is called the “set of metrics for local accuracy” or the “set of local metrics”. 

3.3.2. Cross-Validation and Jackknife Test 
Three cross-validation methods are often used in statistical prediction. They are: 1) independent da-

taset test, 2) subsampling (or K-fold cross-validation) test, and 3) jackknife test [204]. Of these three, 
however, the jackknife test was deemed the least arbitrary that can always yield a unique result for a given 
benchmark dataset [37, 38], as clearly elucidated in a comprehensive review paper [3] and demonstrated 
by Eqs. (28)-(32) therein. Therefore, the jackknife test has been increasingly recognized and widely 
adopted by investigators to test the power of various prediction methods (see, e.g., [80, 82, 101, 110, 
205-208]). 

Therefore, all the predictors in Section 2 were examined by the jackknife tests. 

3.4. Web Servers 

The last but not least important guideline in the 5-step rules is about the web-server. As pointed out 
in [209] and demonstrated in a series of recent publications (see, e.g., [5-15, 17-19, 174, 180-185, 197-201, 
203, 210-244]), user-friendly and publicly accessible web-servers represent the future direction for devel-
oping practically more useful predictors. Actually, many practically useful web-servers have significantly 
increased bioinformatics impacts on medicinal chemistry [74], driving medicinal chemistry into an un-
precedented revolution [171]. 

All the multi-label predictors listed in Section 2 have their web-servers well established as summa-
rized below. 

3.4.1. mPLoc Series 
This series contains six publicly accessible web-servers: (1) “Euk-mPLoc” at  

http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/ [43] for predicting the subcellular localization of euka-
ryotic proteins. (2) “Hum-mPLoc” at http://www.csbio.sjtu.edu.cn/bioinf/hum-multi-2/ [41] for predict-
ing the subcellular localization of human proteins. (3)“Plant-mPLoc” at  
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ [44] for predicting the subcellular localization of plant 
proteins. (4)“Virus-mPLoc” at http://www.csbio.sjtu.edu.cn/bioinf/virus-multi/ [46] for predicting the 
subcellular localization of virus proteins. (5)“Gneg-mPLoc” at  
http://www.csbio.sjtu.edu.cn/bioinf/Gneg-multi/ [45] for predicting the subcellular localization of 
Gram-negative bacterial proteins. (6) “Gpos-mPLoc” at http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/ 
[42] for predicting subcellular localization of Gram-positive bacterial proteins. 

The aforementioned six web-servers have also been integrated into a package called “Cell-PLoc” at 
PLoc/ [37] and its updated version “Cell-PLoc 2.0” at http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ 
[38]. 

3.4.2. iLoc-Series 
It contains the following seven web-servers. 1) “iLoc-Euk” at http://www.jci-bioinfo.cn/iLoc-Euk [49] 

for predicting the subcellular localization of eukaryotic proteins. 2) “iLoc-Hum” at  
http://www.jcibioinfo.cn/iLoc-Hum [52] for predicting the subcellular localization of human proteins. 3) 
“iLoc-Animal” at Animal [55] for predicting the subcellular localization of animal proteins. 4) 
“iLoc-Plant” at http://www.jci-bioinfo.cn/iLoc-Plant [50] for predicting the subcellular localization of 
plant proteins. 5) “iLoc-Virus” at http://www.jci-bioinfo.cn/iLoc-Virus [51] for predicting the subcellular 
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localization of virus proteins. 6) “iLoc-Gneg” at http://www.jcibioinfo.cn/iLoc-Gneg [53] for predicting 
the subcellular localization of Gram-negative proteins. 7) “iLoc-Gpos” at  
http://www.jci-bioinfo.cn/iLoc-Gpos [54]. 

3.4.3. pLoc-m Series 
There are seven web-servers in this series as listed below. 1) “pLoc-mEuk” at  

http://www.jci-bioinfo.cn/pLoc-mEuk/ [60] for predicting the subcellular localization of eukaryotic pro-
teins. 2) “pLoc-mHum” at http://www.jci-bioinfo.cn/pLoc-mHum/ [62] for predicting the subcellular lo-
calization of human proteins. 3) “pLoc-mAnimal” at http://www.jci-bioinfo.cn/pLoc-mAnimal/ [58] for 
predicting the subcellular localization of animal proteins. 4) “pLoc-mPlant” at  
http://www.jci-bioinfo.cn/pLoc-mPlant/ [56] for predicting the subcellular localization of plant proteins. 
5) “pLoc-mVirus” at http:// www.jci-bioinfo.cn/pLoc-mVirus/ [57] for predicting the subcellular localiza-
tion of virus proteins. 6) “pLoc-mGneg” at http://www.jcibioinfo.cn/pLoc-mGneg/ [61] for predicting the 
subcellular localization of Gram-negative proteins. 7) “pLoc-mGpos” at  
http://www.jcibioinfo.cn/pLoc-mGpos/ [59] for predicting the subcellular localization of Gram-positive 
proteins. 

3.4.4. pLoc_bal-m Series 
There are seven web-servers in this series as listed below. 1) “pLoc_bal-mEuk” at [2]. 2) 

“pLoc_bal-mHum” [2]. 3) “pLoc_bal-mAnimal” [65]. 4) “pLoc_bal-mPlant” [26]. 5) “pLoc_bal-mVirus” 
[29]. 6) “pLoc_bal-mGneg” [63]. 7) “pLoc_bal-mGpos” [29]. 

Listed in Table 1 are the global accuracy rates (cf. Equation (4)) predicted with the aforementioned 
seven web-servers, while the corresponding the local accuracy rates (cf. Equation (6)) are given in Table 2. 
As shown from the rates in the two tables, all the seven web-servers have yielded very high prediction 
quality in both the global and local cases. Therefore, using these web-servers, the majority of experimental 
scientists can easily obtain their desired results without the need to go through the detailed mathematics 
involved. 

Below, let us take the multi-label predictor of pLoc_bal-mEuk [2] as a showcase. 1) Click the link at 
mEuk/, you’ll see the top page for predicting the eukaryotic protein subcellular localization prompted on 
your computer screen (Figure 2). 2) You can either type or copy/paste the sequences of query eukaryotic 
proteins into the input box at the center of Figure 2. The input sequence should be in the FASTA format. 
You can click the Example button right above the input box to see the sequences in FASTA  
 
Table 1. List of the five global metrics rates reported from each of the seven predictors in the pLoc_bal-m 

series. 

No Predictora Aimingb Coverageb Accuracyb Absolutetrueb Absolutefalseb 

1 pLoc_bal-mEuk 88.31% 85.06% 84.34% 78.78% 0.07% 

2 pLoc_bal-mHum 90.57% 82.75% 84.39% 79.14% 1.20% 

3 pLoc_bal-mAnimal 87.96% 85.33% 84.64% 73.11% 1.65% 

4 pLoc_bal-mPlant 91.74% 87.39% 88.02% 84.87% 0.78% 

5 pLoc_bal-mVirus 88.97% 92.86% 89.77% 82.13% 2.66% 

6 pLoc_bal-mGneg 96.61% 95.81% 96.05% 94.68% 0.36% 

7 pLoc_bal- mGpos 97.69% 97.13 % 97.40 % 97.11% 0.14% 
aSee Equation (1) of Section 2 for further explanation. bSee Equation (5) for the definition of the global 
metrics. 

https://doi.org/10.4236/ns.2020.127036
http://www.jcibioinfo.cn/iLoc-Gneg
http://www.jci-bioinfo.cn/iLoc-Gpos
http://www.jci-bioinfo.cn/pLoc-mEuk/
http://www.jci-bioinfo.cn/pLoc-mHum/
http://www.jci-bioinfo.cn/pLoc-mAnimal/
http://www.jci-bioinfo.cn/pLoc-mPlant/
http://www.jci-bioinfo.cn/pLoc-mVirus/
http://www.jcibioinfo.cn/pLoc-mGneg/
http://www.jcibioinfo.cn/pLoc-mGpos/


 

 

https://doi.org/10.4236/ns.2020.127036 448 Natural Science 
 

Table 2. Performance of pLoc_bal-mEuk for each of the 22 subcellular locations. 

i Locationa Sn(i)b Sp(i)b Acc(i)b MCC(i)b 

1 Acrosome 1.0000 0.9997 0.9997 0.9353 

2 Cell membrane 0.9986 0.9907 0.9914 0.9505 

3 Cell wall 0.9796 0.9990 0.9988 0.9158 

4 Centrosome 1.0000 0.9961 0.9961 0.8712 

5 Chloroplast 0.9948 0.9988 0.9986 0.9851 

6 Cyanelle 1.0000 1.0000 1.0000 1.0000 

7 Cytoplasm 0.8477 0.9559 0.9254 0.8137 

8 Cytoskeleton 1.0000 0.9959 0.9960 0.9024 

9 Endoplasmic reticulum 0.9978 0.9970 0.9970 0.9741 

10 Endosome 1.0000 0.9992 0.9992 0.9336 

11 Extracell 0.9962 0.9955 0.9956 0.9815 

12 Golgi apparatus 0.9961 0.9963 0.9963 0.9452 

13 Hydrogenosome 1.0000 1.0000 1.0000 1.0000 

14 Lysosome 1.0000 0.9999 0.9999 0.9913 

15 Melanosome 1.0000 1.0000 1.0000 1.0000 

16 Microsome 1.0000 0.9995 0.9995 0.8742 

17 Mitochondrion 1.0000 0.9940 0.9945 0.9636 

18 Nucleus 0.8858 0.9550 0.9343 0.8429 

19 Peroxisome 1.0000 0.9988 0.9988 0.9609 

20 Spindle pole body 1.0000 0.9991 0.9991 0.9518 

21 Synapse 1.0000 0.9994 0.9994 0.9504 

22 Vacuole 1.0000 0.9984 0.9985 0.9657 
aSee Table 1 and the relevant context for further explanation. bSee Equation (7) for the metrics definition. 
 
format. 3) Click on the Submit button to see the predicted result; e.g., if you use the four protein sequences 
in the Example window as the input, after 10 seconds or so, you will see a new screen shown up (Figure 3). 
Listed on its upper part are the names of the subcellular locations numbered from “1” to “22” that are cov-
ered by the predictor for the eukaryotic proteins. Shown in its lower part is a table of two columns. Listed 
in the left-column are the IDs of query proteins; listed in the right column are the predicted subcellular 
locations denoted by the integer numbers within the range of 1 to 22. As we can see from the figure, the 
output for the query protein Q63564 of example-1 is “1,” meaning it belonging to “acrosome” only; the 
output for the query protein P23276 of example-2 is “2, 8” meaning it belonging to “cell membrane” and 
“cytoskeleton”; the output for the query protein Q9VVV9 of example-3 is “2, 7, 18”, meaning it belonging 
to “cell membrane”, “cytoplasm”, and “nucleus”; the output for the query protein Q673G8 of example-4 is 
“2, 7, 10, 18”, meaning it belonging to “cell membrane”, “cytoplasm”, “endosome”, and “nucleus”. All 
these results are perfectly consistent with experimental observations. 

As shown on the lower panel of Figure 2, you may also choose the batch prediction by entering your 
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Figure 2. A semi screenshot for the top page of pLoc_bal-mEuk. 

 

 
Figure 3. A semi screenshot for the webpage obtained by following Step 3 of Section 3.5.4. 

 
e-mail addresses and your batch input file (in FASTA format of course) via the Browse button. To see the 
sample of batch input file, click on the button Batch-example. After clicking the button Batch-submit, you 
will see “Your batch job is under computation; once the results are available, you will be notified by 
e-mail.” 

4. CONCLUSIONS AND PERSPECTIVE 
The development of protein subcellular location prediction can be separated into two stages. In the 

early stage, all the prediction methods were developed with the assumption that each of the constituent 
proteins in a cell was located in one and only one location (organelle). Although those methods did play 
important roles in stimulating the development of such a fundamental area in cell molecular biology and 
proteomics, the aforementioned original hypothesis has been proved not completely correct. With more 
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experimental data available, it has been found that many protein molecules may simultaneously exist or 
move between two or more subcellular location sites. It is these multiplex proteins that are of significance 
for in-depth understanding the biological processes in a living cell. 

Since a multiplex protein needs the multiple labels to mark its locations, the multi-label theory and 
techniques [66] have been introduced into this frontier area of molecular biology. Meanwhile, to examine 
the power of a multi-label predictor, two sets of metrics have been introduced: one is the set of global me-
trics for evaluating its accuracy for an entire cell or in the global level, and the other is the set of local me-
trics for evaluating its accuracy for a specific subcellular location or in the local level. Of these metrics, the 
most important is the one for measuring the success rate of “absolute true” at the global level, which is also 
the harshest one for improvement. 

The predictors introduced in this review paper have been all established by following the 5-steps rule 
[3], and hence they each have a user-friendly web server for the majority of experimental scientists to easi-
ly get their desired data. Also, their cornerstones are based on PseAAC [3, 47, 48, 173, 245], and hence 
their prediction quality is usually higher than the other methods. 

It has not escaped our notice that since multi-label proteins usually have some unique or exceptional 
functions [37, 38, 74, 246], the advance in predicting this kind of proteins is far beyond the meaning of 
merely understanding the biological process concerned. It will play increasingly important roles for de-
signing multi-target drugs [247-251], which represents a very hot trend currently in drug development 
[252]. 

It is instructive to point out that, in comparison with their counterparts, the benchmark datasets in 
Section 3.1 have the following two merits: 1) more stringent in excluding homology bias, and 2) cover 
more location sites. It is expected, however, with more experimental data available in future, they will also 
need updated in both the stringent criteria and coverage scope, so as to further empower the multi-label 
predictors in Section 3.5.4. 

Finally, it is illuminative to point out that using graphic approaches to study biological and medical 
systems can provide an intuitive vision and useful insights for helping analyze complicated relations 
therein as shown in the systems of enzyme fast reaction [253-255], graphical rules in molecular biology 
[256-259], and low-frequency internal motion in biomacromolecules (such as protein and DNA) [260]. 
Particularly, what happened is that this kind of insightful implication has also been demonstrated in [261] 
and many follow-up publications [262-285]. 
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