Share This Article:

Structural and Electrical Characterization of Sintered Silicon Nitride Ceramic

Abstract Full-Text HTML Download Download as PDF (Size:1163KB) PP. 738-747
DOI: 10.4236/msa.2011.27102    7,947 Downloads   13,067 Views   Citations

ABSTRACT

The electrical conduction phenomena, dielectric response and microstructure have been discussed in sintered silicon nitride ceramics at different temperature and frequencies. Microstructure and phase of the sintered samples was investigated by Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD). The electrical conductivity, dielectric constant and dielectric loss increases exponentially with temperature greater than 600 K. The dielectric constant and loss have been measured in the frequency range 100 Hz to 1 MHz. The a.c. conduction studies in the audio frequency range 500 Hz to 1 MHz indicates that the conduction may be due to the electronic hopping mechanism. Silicon Nitride ceramics became dense after sintering. The effect of grain size and role of phase on electrical and dielectric properties have been discussed. These types of samples can be used as a high temperature semi conducting materials for device packaging.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Khan and M. Zulfequar, "Structural and Electrical Characterization of Sintered Silicon Nitride Ceramic," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 738-747. doi: 10.4236/msa.2011.27102.

References

[1] H.-J. Choi, J.-G. Lee and Y.-W. Kim, “High Temperature Strength and Oxidation Behavior of Hot-Pressed Silicon Nitride-Disilicate Ceramics,” Journal of Materials Science, Vol. 32, No. 7, 1997, pp. 1937-1942.
[2] Y. S. Zheng, K. M. Knowles, J. M. Vieira, A. B. Lopes and F. J. Oliveira, “Microstructure, Toughness and Flexural Strength of Self-Reinforced Silicon Nitride Ceramics Doped with Yttrium Oxide and Ytterbium Oxide,” Journal of Microscopy, Vol. 201, No. 2, 2001, pp. 238-249. doi:10.1046/j.1365-2818.2001.00839.x
[3] I. Khan and M Zulfequar, “Effect of Tellurium on Electrical and Structural Properties of Sintered Silicon Nitride Ceramics,” Physica B, Vol. 404, No. 16, 2009, pp. 2395-3400. doi:10.1016/j.physb.2009.04.050
[4] R. D. Gould, S. A. Awan, “DC Conductivity in RF Magnetron Sputtered Gold–Silicon Nitride–Gold Sandwich Structures,” Thin Solid Film, Vol. 398-399, 2001, pp. 454-459. doi:10.1016/S0040-6090(01)01383-9
[5] M. C. Hugon, F. Delmotte, B. Agiusa and J. L. Courant, “Electrical Properties of Metal–Insulator–Semiconductor Structures with Silicon Nitride Dielectrics Deposited by Low Temperature Plasma Enhanced Chemical Vapor Deposition Distributed Electron Cyclotron Resonance,” Journal of Vacuum Science & Technology A, Vol. 15, No. 6, 1997, pp. 3143-3154.
[6] J. H. She, J. F. Yang and D. J. Daniel, “Thermal Shock Behavior of Isotropic and Anisotropic Porous Silicon Nitride,” Journal of the American Ceramic Society, Vol. 86, No. 4, 2003, pp. 738-740.
[7] S. K. Lee, J. D. Moretti, M. J. Readey and B. R. Lawn, “Thermal Shock Resistance of Silicon Nitrides Using an Indentation–Quench Test,” Journal of the American Ceramic Society, Vol. 85, No. 1, 2002, pp. 279-281.
[8] S. Toshimori, “Shock Synthesis of Cubic Silicon Nitride,” Journal of the American Ceramic Society, Vol. 85, No. 1, 2002, pp. 113-116.
[9] S. F. Dennis, J. O. Elizabeth and N. N. Quynhgiao, “Paralinear Oxidation of Silicon Nitride in a Water-Vapor/ Oxygen Environment,” Journal of the American Ceramic Society, Vol. 86, No. 8, 2003, pp. 1256-1261.
[10] M. Backhaus-Ricoult, V. Guerin, A. M. Huntz and V. S. Urbanovich, “High-Temperature Oxidation Behavior of High-Purity α-, β-, and Mixed Silicon Nitride Ceramics,” Journal of the American Ceramic Society, Vol. 85, No. 2, 2002, pp. 385-392.
[11] Y. Zhang, Y. B. Cheng S. Lathabai and K. Hirao, “Erosion Response of Highly Anisotropic Silicon Nitride,” Journal of the American Ceramic Society, Vol. 88, No. 1, 2005, pp. 114-120.
[12] A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken and R. Riedel, “Elastic Moduli and Hardness of Cubic Silicon Nitride,” Journal of the American Ceramic Society, Vol. 85, No. 1, 2002, pp. 86-90.
[13] J. Barta, M. Manela and R. Fischer, “Si3N4 and Si2N2O for High Performance Radome,” Materials Science and Engineering, Vol. 71, 1984, pp. 265-272.
[14] W. Braue, G. Wo¨tting and G. Ziegler, “Influence of Sintering Conditions on Mechanical Properties at Room and High Temperatures for Selected Y-Al-Si-O-N Materials,” Journal of Physics, Vol. 2, No. 47, 1986, pp. C1-341-C1-345.
[15] G. D. Quinn and W. Braue, “Fracture Mechanism Maps for Advanced Structural Ceramics,” Journal of Materials Science, Vol. 25, No. 10, 1990, pp. 4377-4392. doi:10.1007/BF00581096
[16] M. H. Lewis, G. Leng-Ward and C. Jasper, “Sintering Additive Chemistry in Controlling Microstructure and Properties of Nitride Ceramics,” In: G. L. Messing, E. R. Fuller Jr. and H. Hausner, Eds., Ceramic Transactions, Vol. 1, Ceramic Powder Science II, Part B, American Ceramic Society, Westerville, OH, 1988, pp. 1019-1033.
[17] A. Vuckovic, S. Boskovic and L. Zivkovic, “Synthesis of ‘in-Situ’ Reinforced Silicon Nitride Composites,” Journal of the Serbian Chemical Society, Vol. 69, No. 1, 2004, pp. 59-67. doi:10.2298/JSC0401059V
[18] M. K. Park, H. N. Kim, K. S. Lee, S. S. Baek, E. S. Kang, Y. K. Baek and D. K. Kim, “Effect of Microstructure on Dielectric Properties of Si3N4 at Microwave Frequency,” Key Engineering Materials, Vol. 287, 2005, pp. 247-252. doi:10.4028/www.scientific.net/KEM.287.247
[19] J. D. Walton, Journal of the American Ceramic Society, Bull. 53 (1974) 255.
[20] J. S. Throp and R. I. Sharif, “Dielectric Properties of Some Hot-Pressed Nitrogen Ceramics,” Journal of Materials Science, Vol. 12, No. 11, 1977, pp. 2274-2280. doi:10.1007/BF00552249
[21] C. P. Gazzara, D. R. Messier, Journal of the American Ceramic Society, Vol. 78 (1977) 1076.
[22] I. V. Kityk and P. Mandracci, “Nonlinear Optical Effects in Amorphous-Like SiCON Films,” Physics, Vol. 340, No. 5-6, June 2005, pp. 466-473.
[23] D. F. Shriver, P. W. Atkins and C. H. Langford, “Inorganic Chemistry,” Freeman, New York, 1994.
[24] K. F. Purcell and J. C. Kotz, “Inorganic Chemistry,” Saunders, Philadelphia, 1977.
[25] M. M. El-Nahass, H. M. Zeyada, M. M. El-Samanoudy, E. M. El-Menyawy, Journal of Physics: Condensed Matter, Vol. 18, No. 22, 2006, p. 5163. doi:10.1088/0953-8984/18/22/016
[26] F. Yakuphanoglu, Y. Aydogdu, U. Schatzschneider and E. Rentschler, “DC and AC Conductivity and Dielectric Properties of the Metal-Radical Compound: Aqua[bis(2-dimethylaminomethyl-4-NIT-phenolato)]Copper(II),” Solid State Communications, Vol. 128, No. 2-3, 2003, pp. 63-67.
[27] M. Kara and A. Kerber, “Manufacture and Properties of Nitride Bonded Silicon Carbide Materials,” Fachberichte, Vol. 72, No. 6, 1995, pp. 325-328.
[28] D. Liufu, X. S. Wang, D. M. Tu, and K. C. Kao, Journal of Applied Physics, “High-Field Induced Electrical Aging in Polypropylene Films,” Vol. 83, No. 4, 1998, p. 2209. doi:10.1063/1.366958
[29] H.-J. Choia, D.-H. Hanb, D.-S. Park, H.-D. Kimc, B.-D. Hanc, D.-S. Lima and I.-S. Kim, “Erosion characteristics of silicon nitride ceramics,” Ceramics International, Vol. Vol. 29, No. 6, 2003, pp. 713-719.
[30] J.-F. Yang, T. Ohji, S. Kanzaki, A. Díaz and S. Hampshire, “Microstructure and Mechanical Properties of Silicon Nitride Ceramics with Controlled Porosity,” Journal of the American Ceramic Society, Vol. 85, No. 6, 2002, pp. 1512-1516.
[31] J. Xu, D. M. Zhu, F. Luo, W. C. Zhou and P. Li, “Dielectric Properties of Porous Reaction-boned Si3N4 Ceramics with Controlled Porosity and Pore Size,” Journal of Materials Science Technology, Vol. 24. No. 2, 2008, p. 207.
[32] J. A. Schneider, S. H. Risbud, and A. K. Mukherjee, “Rapid Consolidation Processing of Silicon Nitride Powders,” Journal of Materials Research, Vol. 11, No. 2, February 1996, pp. 358-362. doi:10.1557/JMR.1996.0043

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.