[1]
|
UNEP (2013) Global Mercury Assessment. UNEP Division of Technology, Industry and Economics, Chemicals Branch International Environment House, Geneva, 9-16.
|
[2]
|
Klasson, K.T., Lima, I.M. and Boihem, J.L.L. (2010) Feasibility of Mercury Removal from Simulated Flue Gas by Activated Chars Made from Poultry Manures. J. Envir. Manag, 91, 2466-2470.
http://dx.doi.org/10.1016/j.jenvman.2010.06.028
|
[3]
|
De, M., Azargohar, R., Dalai, A.K. and Shewchuk, S.R. (2013) Mercury Removal by Bio-Char Based Modified Activated Carbons. Fuel, 103, 570-578. http://dx.doi.org/10.1016/j.fuel.2012.08.011
|
[4]
|
Hocquel, M., Unerberger, S. and Hein, K.R.G. (2001) Influence of Temperature and HCl Concentration on Mercury Speciation in the Presence of Calcium Oxide (CaO). Chem. Eng. Technol, 24, 1267-1272.
http://dx.doi.org/10.1002/1521-4125(200112)24:12<1267::AID-CEAT1267>3.0.CO;2-Y
|
[5]
|
Bilirgen, H. and Romero, C. (2012) Mercury Capture by Boiler Modifications with Sub-Bituminous Coals. Fuel, 94, 361-367. http://dx.doi.org/10.1016/j.fuel.2011.10.047
|
[6]
|
Kwons, S. and Vidic, R.D. (2000) Evaluation of Two Sulfur Impregnation Methods on Activated Carbon and Ben- tonite for the Production of Elemental Mercury Sorbents. Environ. Eng. Sci, 17, 303-313.
http://dx.doi.org/10.1089/ees.2000.17.303
|
[7]
|
Dunham, G.E. and DeWall, R.A. (2003) Fixed-Bed Studies of the Interactions between Mercury and Coal Combustion Fly Ash. Fuel Process. Technol., 82, 197-213. http://dx.doi.org/10.1016/S0378-3820(03)00070-5
|
[8]
|
Galbreath, K.C., Zygarlicke, C.J., Toman, D.L. and Tibbetts, J.E. (2004) Effects of NOx, α-Fe2O3, and γ-Fe2O3 on Mercury Transformations in a 7-kW Coal Combustion System. Fuel Process. Technol, 86, 429-448.
http://dx.doi.org/10.1016/j.fuproc.2004.03.003
|
[9]
|
Assebban, M., Kasmi, A.E., Harti, S. and Chafik, T. (2015) Intrinsic Catalytic Properties of Extruded Clay Honeycomb Monolith toward Complete Oxidation of Air Pollutants. J. Hazard. Mater, 300, 590-597.
|