Spinel-Bearing Lherzolite Xenoliths from Hosséré Garba (Likok, Adamawa-Cameroon): Mineral Compositions and Geothermobarometric Implications


Spinel-bearing lherzolite xenoliths from the Hossere Garba (1272 m.a.s.l) volcano on the Adamawa Plateau, is located in Likok village, at about 35 km to WSW of Ngaoundere. These xenoliths (~11 cm size) have been sampled into the host basaltic lava flows from the NE flank of the Hossere Garba volcano. These xenoliths characterized by porphyroclastic texture consisted of olivine (~55 vol.%), orthopyroxene (~19 vol.%) and clinopyroxene (~21 vol.%) crystals. Spinel crystals (~5 vol.%) are red brown and interstitial between the crystals of olivine and pyroxenes. CaO contents are low (<0.08 wt%) in olivine and similar to those estimated (CaO: 0.05 - 0.1 wt%) for the mantle origin. The values of AlVI/AlIV ratio range between 1.1 and 1.3 for the Cr-diopside crystals from Hossere Garba xenoliths. The constant value of the volumes V(Cell) and V(M1) for clinopyroxene compositions, indicates the similar pressures. Hossere Garba represents a residual sequence issued from partial melting of a mantle source. Similar compositions have been recorded in minerals of ultramafic xenoliths from other ultramafic xenoliths domains of the Cameroon Line and the Adamawa Plateau.

Share and Cite:

Dagwai, N. , Gilles, C. , Pierre, K. , Bertrand, M. and Ismaïla, N. (2014) Spinel-Bearing Lherzolite Xenoliths from Hosséré Garba (Likok, Adamawa-Cameroon): Mineral Compositions and Geothermobarometric Implications. International Journal of Geosciences, 5, 1435-1444. doi: 10.4236/ijg.2014.512117.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Menzies, M.A., Halliday, A.N., Palacz, Z., Hunter, R.H., Upton, B.G.J., Aspen, P. and Hawkesworth, C.J. (1987) Evidence from Mantle Xenoliths for an Enriched Lithospheric Keel under the Outer Hebrides. Nature, 325, 44-47.
[2] Frey, F.A. and Prinz, M. (1978) Ultramafic Inclusions from San Carlos, Arizona: Petrologic and Geochemical Data Bearing on Their Protogenesis. Earth and Planetary Science Letters, 38, 129-175.
[3] Ngounouno, I., Dagwai, N., Kamgang, P. and Deruelle, B. (2008) Petrology of Spinel Lherzolite Xenoliths in Alkali Basalts from Liri, South of the Kapsiki Plateau (Northernmost Cameroon Hot Line). Journal of Cutaneous and Aesthetic Surgery, 8, 31-42.
[4] Nkouandou, O.F. and Temdjim, R. (2011) Petrology of Spinel Lherzolite Xenoliths and Host Basaltic Lava from Ngao Voglar Volcano, Adamawa Massif (Cameroon Volcanic Line, West Africa): Equilibrium Conditions and Mantle Characteristics. Journal of Geosciences, 56, 375-387.
[5] Teitchou, S.F., Van Schmus, W.R., Penaye, J. and Michard, A. (2001) New U-Pb and SmNd Data from North-Central Cameroon and Its Bearing on the Pre-Pan-African History of Central Africa. Precambrian Research, 108, 45-53.
[6] Girod, M., Dautria, J.-M. and Balle, S.D. (1984) Estimation de la profondeur du manteau du Moho sous le massif volcanique de l’Adamaoua (Cameroun) à partir de l’etude d’enclaves de lherzolite. C. R. Acad. Sci. Paris 2, 298, 699-704.
[7] Dautria, J.M. and Girod, M. (1986) Les enclaves de lherzolite à spinelle et plagioclase du volcan de Dibi (Adamaoua, Cameroun): Des temoins du manteau anormal. Bull. Mineral, 109, 275-286
[8] Temdjim, R. (2005) Contribution à la connaissance du manteau superieur du Cameroun au travers de l’etude des enclaves ultrabasiques et basiques par les volcans de Youkou (Adamaoua) et de Nyos (Ligne du Cameruon). Thèse de Doctorat d’Etat, Universite de Yaounde 1, 339 p.
[9] Moreau, C., Regnoult, J.-M., Deruelle, B. and Robineau, B. (1987) A New Tectonic Model for the Cameroon Line, Central Africa. Tectonophysics, 139, 317-334.
[10] Toteu S.F., Van Schmus, R.W., Penaye, J. and Nyobe, J.B. (1994) U-Pb and Sm-Nd Evidence for Eburnian and Pan-African High-Grade Metamorphism in Cratonic Rocks of Southern Cameroon. Precambrian Research, 67, 321-347.
[11] Penaye, J., Toteu, S.F., Tchameni, R., Van Schmus, W.R., Tchakounte, J., Ganwa, A., Minyem, D. and Nsifa, E.N. (2004) The 2.1 Ga West Central African Belt in Cameroon: Extension and Evolution. Journal of African Earth Sciences, 39, 159-164.
[12] Lasserre, M. and Soba, D. (1979) Migmatisation d’age panafricain au sein des formations camerounaises appartenant à la zone mobile d’Afrique centrale. Comptes Rendus sommaires Societe Geologique de France, 2, 64-68.
[13] Castaing, C., Feybesse, J.L., Thieblemont, D., Triboulet, C. and Chevremont, P. (1994) Palaeogeographical Reconstructions of the Pan-African/Brasiliano Orogen: Closure of an Oceanic Domain or Intercontinental Convergence between Major Blocks? Precambrian Research, 67, 327-344.
[14] Tchameni, R., Pouclet, A., Penaye, J., Ganwa, A.A. and Toteu, S.F. (2006) Petrography and Geochemistry of the Ngaoundere Pan-African Granitoids in Central North Cameroon: Implications for Their Sources and Geological Setting. Journal of African Earth Sciences, 44, 511-529.
[15] Nono, A., Deruelle, B., Demaiffe, S.D. and Kambou, R. (1994) Tchabal Nganha Volcano in Adamawa (Cameroon): Petrology of a Continental Alkaline Lava Series. Journal of Volcanology and Geothermal Research, 60, 147-178.
[16] Itiga, Z., Chakam-Tagheu, P.-J., Wochoko, P., Wandji, P., Bardintzeff, J.M. and Bellon, H. (2004) La Ligne du Cameroun: Volcanologie et geochronologie de trois regions (Mont Manengouba, Plaine de Noun et Tchabal Gangdaba). Geochronique, 91, 13-16.
[17] Temdjim, R., Boivin, P., Chazot, G., Robin, C. and Roulleau, E. (2004) L’heterogeneite du manteau superieur à l’aplomb du volcan de Nyos (Cameroun) revelee par les enclaves ultrabasiques. Comptes Rendus Geoscience, 336, 1239-1244.
[18] Nkouandou, O.F., Ngounouno, I., Deruelle, B., Ohnenstetterd, D., Montigny, R. and Demaiffe, D. (2008) Petrology of the Mio-Pliocene Volcanism to the North and East of Ngaoundere (Adamawa, Cameroon). Comptes Rendus Geoscience, 340, 28-37.
[19] Mbowou, G.B. (2010) Petrologie du volcanisme bimodal du Djinga Tadorgal (Adamaoua, Cameroun). Rev Cames, 11, 36-42.
[20] Harte, B. (1977) Rock Nomenclature with Particular Relation to Deformation and Recrystallisation Textures in Olivine-Bearing Xenoliths. Journal of Geology, 85, 279-288.
[21] Irving, A.J. (1980) Petrology and Geochemistry of Composite Ultramafic Xenoliths in Alkalic Basalts and Implications for Magmatic Processes in the Mantle. American Journal of Science, 280A, 389-426.
[22] Lee, D.C., Halliday, A.N., Davies, G.R., Essene, E.J., Fitton, G.J. and Temdjim, R. (1996) Melt Enrichment of Shallow Depleted Mantle: A Detailed Petrological, Trace Element and Isotopic Study of Mantle-Derived Xenoliths and Megacrysts from the Cameroon Line. Journal of Petrology, 37, 415-441.
[23] Brey, G.P. and Kohler, T. (1990) Geothermobarometry in Four-Phase Lherzolites II, New Thermobarometers, and Practical Assessment of Existing Their Barometers. Journal of Petrology, 31, 1353-1378.
[24] Morimoto, N. (1989) Nomenclature of Pyroxenes. Can. Mineral., 27, 143-154.
[25] Dal Negro, A., Carbonin, S., Domeneghetti, C., Molin, G.M., Cundari, A. and Piccirillo, E.M. (1984) Crystal Chemistry and Evolution of the Clinopyroxene in a Suite of High Pressure Ultramafic Nodules from the Newer Volcanics of Victoria, Australia. Contributions to Mineralogy and Petrology, 86, 221-229.
[26] Princivalle, F., Salviulo, G., Fabro, C. and Demarchi, G. (1994) Inter- and Intra-Crystalline Temperature and Pressure Estimates on Pyroxenes from NE Brazil Mantle Xenoliths. Contributions to Mineralogy and Petrology, 116, 1-6.
[27] Wells, P.R.A. (1977) Pyroxene Thermometry in Sample and Complex System. Contributions to Mineralogy and Petrology, 62, 129-139.
[28] Bertrand, P., Sotin, C., Gaulier, J.M. and Mercier, J.C.C. (1987) La solubilite de l’aluminium dans l’orthopyroxène. Inversion globale des donnees experimentales du systeme MgO-Al2O3-SiO2. Bulletin de la Societe Geologique de France, 8, 821-832.
[29] Clark Jr., S.J. and Ringwood, A.E. (1964) Density Distribution and Constitution of the Mantle. Reviews of Geophysics, 2, 35-88.
[30] O’neill, H.S.C. (1981) The Transition between Spinel Lherzolite and Garnet Lherzolite, and Its Use as a Geobarometer. Contributions to Mineralogy and Petrology, 77, 185-194.
[31] Green, D.H. and Hibberson, W. (1970) The Instability of Plagioclase in Peridotite at High Pressure. Lithos, 3, 209-221.
[32] Green, D.H. (1973) Condition of Melting of Basaltic Magma from Grenat Peridotite. Earth and Planetary Science Letters, 17, 456-465.
[33] Gasparik, T. (1987) Orthopyroxene Thermobarometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 96, 357-370.
[34] O’reilly, S.Y., Chen, D., Griffin, W. and Ryan, C.G. (1997) Minor Elements in Olivine from Spinel Lherzolite Xenoliths: Implications for Thermobarometry. Mineralogical Magazine, 61, 257-269.
[35] Xu, X., O’reilly, S.Y., Griffin, W.L., Zhou, X.M. and Huang, X.L. (1998) The Nature of the Cenozoic Lithosphere at Nushan, Eastern China. In: Flower, M.F.J., Ed., Mantle Dynamics and Plate Interactions in East Asia, American Geophysical Union, Washington DC, 167-195.
[36] Glaser, S.M., Foley, S.F. and Günther, D. (1999) Trace Element Compositions of Minerals in Garnet and Spinel Peridotite Xenoliths from the Vitim Volcanic field, Transbaikalia, Eastern Siberia. Lithos, 48, 263-285.
[37] Medaris Jr., G., Wang, H.F., Fournelle, J.H., Zimmer, J.H. and Jelinek, E. (1999) A Cautionary Tale of Spinel Peridotite Thermobarometry: An Example from Xenoliths of Kozákov Volcano, Czech Republic. Geolines, 9, 92-96.
[38] Christensen, N.I., Medaris Jr., L.G. and Wang, H.F. (2001) Depth Variation of Seismic Anisotropy and Petrology in Central European Lithosphere: A Tectonothermal Synthesis from Spinel Lherzolites. Journal of Geophysical Research, 106, 645-661.
[39] Foley, S.F., Andronikov, A.V., Jacob, D.E. and Melzer, S. (2006) Evidence from Antarctic Mantle Peridotite Xenoliths for Changes in Mineralogy, Geochemistry and Geothermal Gradients beneath a Developing Rift. Geochimica et Cosmochimica Acta, 70, 3096-3120.
[40] Green, D.H. and Ringwood, A.E. (1967) The Genesis of Basaltic Magmas. Contributions to Mineralogy and Petrology, 15, 103-190.
[41] Mysen, B.O. and Kushiro, I. (1977) Compositional Variations of Coexisting Phases with Degrees of Melting of Peridotte in the Upper Mantle. American Mineralogist, 62, 843-865.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.