Share This Article:

A Bivariate Software Reliability Model with Change-Point and Its Applications

DOI: 10.4236/ajor.2011.11001    6,233 Downloads   11,814 Views   Citations

ABSTRACT

Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-point on the software reliability growth process influences on accuracy for software reliability assessment based on a software reliability growth model (SRGM). We propose an SRGM with the effect of the change-point based on a bivariate SRGM, in which the software reliability growth process is assumed to depend on the testing-time and testing-effort factors simultaneously, for accurate software reliability assessment. And we discuss an optimal software release problem for deriving optimal testing-effort expenditures based on our model. Further, we show numerical examples of software reliability assessment based on our bivariate SRGM and estimation of optimal testing-effort expenditures by using actual data.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Inoue and S. Yamada, "A Bivariate Software Reliability Model with Change-Point and Its Applications," American Journal of Operations Research, Vol. 1 No. 1, 2011, pp. 1-7. doi: 10.4236/ajor.2011.11001.

References

[1] J.D. Musa, “A theory of software reliability and its application,” IEEE Transactions on Software Engineering, Vol. SE-1, No. 3, 1975, pp. 312-327.
[2] S. Yamada and S. Osaki, “Software reliability growth modeling: Models and applications,” IEEE Transactions on Software Engineering, Vol. SE-11, No. 12, 1985, pp. 1431-1437. doi:10.1109/TSE.1985.232179
[3] J.D. Musa, D. Iannio, and K. Okumoto, “Software Reliability: Measurement, Prediction, Application,” McGraw -Hill, 1987.
[4] H. Pham, “Software Reliability,” Springer-Verlag, 2000.
[5] T. Ishii and T. Dohi, “Two-dimensional software reliability models and their application,” Proceedings of the 12th Pacific Rim International Symposium on Dependable Computing, 2006, pp. 3-10.
[6] S. Inoue and S. Yamada, “A bivariate Weibull-type software reliability growth model and its goodness-of-fit evaluation,” (in Japanese) J. Information Processing Society of Japan, Vol. 49, no. 8, August 2008, pp. 2851 -2861.
[7] S. Inoue and S. Yamada, “A framework for two-dimensional software reliability modeling with program size,” Proceedings of the 14th ISSAT International Conference on Reliability and Quality in Design, 2008, pp. 198-202.
[8] M. Zhao, “Change-point problems in software and hardware reliability,” Communications in Statistics -- Theory and Methods, Vol. 22, No. 3, 1993, pp. 757-768. doi:10.1080/03610929308831053
[9] C.Y. Huang, “Performance analysis of software reliability growth models with testing-effort and change-point,” Journal of Systems and Software, Vol. 76, No. 2, 2005, pp. 181-194. doi:10.1016/j.jss.2004.04.024
[10] C.Y. Huang, “Cost-reliability-optimal release policy for software reliability models incorporating improvements in testing efficiency,” Journal of Systems and Software, Vol. 77, No. 2, 2005, pp. 139-155. doi:10.1016/j.jss.2004.10.014
[11] F.Z. Zou, “A change-point perspective on the software failure process,” Software Testing, Verification and Reliability, vol. 13, no. 2, 2003, pp. 85-93. doi:10.1002/stvr.268
[12] J. Zhao, H.W. Liu, G. Cui, and X.Z. Yang, “Software reliability growth model with change-point and environmental function,” Journal of Systems and Software, Vol. 79, No. 11, 2006, pp. 1578-1587. doi:10.1016/j.jss.2006.02.030
[13] S. Inoue and S. Yamada, “Software reliability measurement with change-point,” Proceedings of the International Conference on Quality and Reliability, 2007, pp. 170 -175.
[14] S. Inoue and S. Yamada, “Optimal software release policy with change-point,” Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, 2008, pp. 531-535. doi:10.1109/IEEM.2008.4737925
[15] N. Langberg and N.D. Singpurwalla, “A unification of some software reliability models,” SIAM Journal on Scientific Computing, Vol. 6, No. 3, 1985, pp. 781-790. doi:10.1137/0906053
[16] D.S. Miller, “Exponential order statistic models of software reliability growth,” IEEE Transactions on Software Engineering, Vol. SE-12, No. 1, 1986, pp. 12-24.
[17] D.N.P. Murthy, J. Baik, R.J. Wilson, and M.R. Bulmer, “Two-dimensional failure modeling,” In: H. Pham, Ed., Springer Handbook of Engineering Statistics, Springer -Verlag, Berlin, 2006, pp. 97-111. doi:10.1007/978-1-84628-288-1_5
[18] H. Okamura, T. Dohi, and S. Osaki, “A reliability assessment method for software products in operational phase? Proposal of an accelerated life testing model,” (in Japanese), Transactions of IEICE, Vol. J83-A, No. 3, 2000, pp. 294-301.
[19] S. Yamada and S. Osaki, “Cost-reliability optimal release policies for software systems,” IEEE Transactions on Reliability, Vol. R-34, No. 5, 1985, pp. 422-424. doi:10.1109/TR.1985.5222222
[20] M. Ohba, “Software reliability analysis models,” IBM Journal of Research and Development, Vol. 28, No. 4, 1984, pp. 428-443. doi:10.1147/rd.284.0428
[21] E.J. Gumbel, “Bivariate exponential distributions,” Journal of the American Statistical Association, No. 55, 1960, pp. 698-707. doi:10.2307/2281591

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.