Long-Term Treatment with an Herbal Formula MCC Reduces the Weight Gain in High Fat Diet-Induced Obese Mice


Obesity is a risk factor for metabolic disorders, with its prevalence being increased in the world over the past several decades. Therapeutical interventions for obesity are thus urgently needed. In the present study, we investigated the effect of long-term treatment (0.51 and 5.1 g/kg/day, 5 days per week for a total of 40 doses) with an herbal formula MCC [which comprises the fruit of Momordica charantia (MC), the pericarpium of Citri reticulata and L-carnitine] in normal diet (ND) and high fat diet (HFD)-fed female ICR mice. Body weight change was monitored during the course of the experiment. Fat pad indices, plasma glucose and lipid contents, as well as metabolic enzyme activities and mitochondrial coupling efficiency in skeletal muscle were measured at 24 hours after the last dosing. Results showed that HFD increased the body weight, fat pad indices, plasma glucose and lipid contents as well as β-hydroxyacyl-Co A dehydrogenase (β-HAD) and carnitine palmitoyl CoA transferase (CPT) activities in skeletal muscle. However, the phosphofructokinase (PFK) activity was decreased in skeletal muscle. MCC treatment reduced the HFD-induced increases in body weight, fat pad indices and plasma lipid contents. MCC treatment only partially reversed the HFD-induced changes in β-HAD and CPT activities, but did not restore the HFD-induced decrease in PFK activity. MCC did not alter the plasma glucose level and mitochondrial coupling efficiency in skeletal muscle of ND and HFD-fed mice. Since MCC formula did not increase activities of energy metabolic enzymes or induce mitochondrial uncoupling, the weight loss effect of MCC is likely related to the reduction of intestinal lipid absorption in HFD-fed mice.

Share and Cite:

P. Leong, H. Leung, H. Wong, J. Chen, C. Ma, Y. Yang and K. Ko, "Long-Term Treatment with an Herbal Formula MCC Reduces the Weight Gain in High Fat Diet-Induced Obese Mice," Chinese Medicine, Vol. 4 No. 3, 2013, pp. 63-71. doi: 10.4236/cm.2013.43010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. W. Haslam and W. P. James, “Obesity,” The Lancet, Vol. 366, No. 9492, 2005, pp. 1197-1209. doi:10.1016/S0140-6736(05)67483-1
[2] G. K. Singh, M. D. Kogan and P. C. van Dyck, “Changes in State-Specific Childhood Obesity and Overweight Prevalence in the United States from 2003 to 2007,” Archives of Pediatrics & Adolescent Medicine, Vol. 164, No. 7, 2010, pp. 598-607. doi:10.1001/archpediatrics.2010.84
[3] N. S. The, C. Suchindran, K. E. North, B. M. Popkin and P. Gordon-Larsen, “Association of Adolescent Obesity with Risk of Severe Obesity in Adulthood,” The Journal of the American Medical Association, Vol. 304, No. 18, 2010, pp. 2042-2047. doi:10.1001/jama.2010.1635
[4] J. A. Knight, “Diseases and Disorders Associated with Excess Body Weight,” Annals of Clinical & Laboratory Science, Vol. 41, No. 2, 2011, pp. 107-121.
[5] J. P. Després, “Is Visceral Obesity the Cause of the Metabolic Syndrome?” Annals of Medicine, Vol. 38, No. 1, 2006, pp. 52-63. doi:10.1080/07853890500383895
[6] S. M. Grundy, “Metabolic Syndrome Pandemic,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 28, No. 4, 2008, pp. 629-636. doi:10.1161/ATVBAHA.107.151092
[7] G. I. Shulman, “Cellular Mechanisms of Insulin Resistance,” The Journal of Clinical Investigation, Vol. 106, No. 2, 2000, pp. 171-176. doi:10.1172/JCI10583
[8] A. Bonen, G. L. Dohm and L. J. van Loon, “Lipid Metabolism, Exercise and Insulin Action,” Essays in Biochemistry, Vol. 42, 2006, pp. 47-59. doi:10.1042/bse0420047
[9] N. Musi, N. Fujii, M. F. Hirshman, I. Ekberg, S. Froberg, O. Ljungqvist, A. Thorell and L. J. Goodyear, “AMPActivated Protein Kinase (AMPK) is Activated in Muscle of Subjects with Type 2 Diabetes during Exercise,” Diabetes, Vol. 50, No. 5, 2001, pp. 921-927. doi:10.2337/diabetes.50.5.921
[10] R. R. Wing, E. Venditti, J. M. Jakicic, B. A. Polley and W. Lang, “Lifestyle Intervention in Overweight Individuals with a Family History of Diabetes,” Diabetes Care, Vol. 21, No. 3, 1998, pp. 350-359. doi:10.2337/diacare.21.3.350
[11] E. Caveney, B. J. Caveney, R. Somaratne, J. R. Turner and L. Gourgiotis, “Pharmaceutical Interventions for Obesity: A Public Health Perspective,” Diabetes, Obesity and Metabolism, Vol. 13, No. 6, 2011, pp. 490-497. doi:10.1111/j.1463-1326.2010.01353.x
[12] H. L. Huang, Y. W. Hong, Y. H. Wong, Y. N. Chen, J. H. Chyuan, C. J. Huang and P. M. Chao, “Bitter Melon (Momordica charantia L.) Inhibits Adipocyte Hypertrophy and Down Regulates Lipogenic Gene Expression in Adipose Tissue of Diet-Induced Obese Rats,” British Journal of Nutrition, Vol. 99, No. 2, 2008, pp. 230-239. doi:10.1111/j.1463-1326.2010.01353.x
[13] L. L. Chan, Q. Chen, A. G. Go, E. K. Lam and E. T. Li, “Reduced Adiposity in Bitter Melon (Momordica charantia)-Fed Rats Is Associated with Increased Lipid Oxidative Enzyme Activities and Uncoupling Protein Expression,” Journal of Nutrition, Vol. 135, No. 11, 2005, pp. 2517-2523.
[14] L. A. Nichols, D. E. Jackson, J. A. Manthey, S. D. Shukla and L. J. Holland, “Citrus Flavonoids Repress the mRNA for Stearoyl-CoA Desaturase, a Key Enzyme in Lipid Synthesis and Obesity Control, in Rat Primary Hepatocytes,” Lipids in Health and Disease, Vol. 23, No. 36, 2011, pp. 1-5.
[15] C. L. Hsu and G. C. Yen, “Induction of Cell Apoptosis in 3t3-L1 Pre-Adipocytes by Flavonoids Is Associated with Their Antioxidant Activity,” Molecular Nutrition & Food Research, Vol. 50, No. 11, 2006, pp. 1072-1079. doi:10.1002/mnfr.200600040
[16] B. T. Wall, F. B. Stephens, D. Constantin-Teodosiu, K. Marimuthu, I. A.Macdonald and P. L. Greenhaff, “Chronic Oral Ingestion of L-Carnitine and Carbohydrate Increases Muscle Carnitine Content and Alters Muscle Fuel Metabolism during Exercise In Humans,” The Journal of Physiology, Vol. 589, No. 4, 2011, pp. 963-973. doi:10.1113/jphysiol.2010.201343
[17] S. Reagan-Shaw, M. Nihal and N. Ahmad, “Dose Translation from Animal to Human Studies Revisited,” The FASEB Journal, Vol. 22, No. 3, 2008, pp. 659-661. doi:10.1096/fj.07-9574LSF
[18] S. F. Leibowitz, J. T. Dourmashkin, G. Q. Chang, J. O. Hill, E. C. Gayles, S. K. Fried and J. Wang, “Acute high-Fat Diet Paradigms Link Galanin to Triglycerides and their Transport and Metabolism in Muscle,” Brain Research, Vol. 1008, No. 2, 2004, pp. 168-178. doi:10.1016/j.brainres.2004.02.030
[19] W. S. Coelho, K. C. Costa and M. Sola-Penna, “Serotonin Stimulates Mouse Skeletal Muscle 6-Phosphofructo-1Kinase through Tyrosine-Phosphorylation of the Enzyme Altering Its Intracellular Localization,” Molecular Genetics and Metabolism, Vol. 92, No. 4, 2007, pp. 364-370. doi:10.1016/j.brainres.2004.02.030
[20] H. Y. Leung, P. Y. Chiu, M. K. Poon and K. M. Ko, “A Yang-Invigorating Chinese Herbal Formula Enhances Mitochondrial Functional Ability and Antioxidant Capacity in Various Tissues of Male and Female Rats,” Rejuvenation Research, Vol. 8, No. 4, 2005, pp. 238-247. doi:10.1089/rej.2005.8.238
[21] R. Crescenzo, D. Mainieri, G. Solinas, J. P. Montani, J. Seydoux, G. Liverini, S. Iossa and A. G. Dulloo, “Skeletal Muscle Mitochondrial Oxidative Capacity and Uncoupling Protein 3 Are Differently Influenced by Semistarvation and Refeeding,” FEBS Letters, Vol. 544, No. 1-3, 2003, pp. 138-142. doi:10.1016/S0014-5793(03)00491-5
[22] M. J. Pagliassotti, D. Pan, P. Prach, T. Koppenhafer, L. Storlien and J. O. Hill, “Tissue Oxidative Capacity, Fuel Stores and Skeletal Muscle Fatty Acid Composition in Obesity-Prone and Obesity-Resistant Rats,” Obesity Research, Vol. 3, No. 5, 1995, pp. 459-464. doi:10.1002/j.1550-8528.1995.tb00175.x
[23] S. N. Yun, S. J. Moon, S. K. Ko, B. O. Im and S. H. Chung, “Wild Ginseng Prevents the Onset of High-Fat Diet Induced Hyperglycemia and Obesity in ICR Mice,” Archives of Pharmacal Research, Vol. 27, No. 7, 2004, pp. 790-796. doi:10.1007/BF02980150
[24] M. Siddiqua, K. Hamid, M. H. Ar-Rashid, M. S. Akther and M. S. K. Choudhuri, “Changes in Lipid Profile of Rat Plasma after Chronic Administration of Laghobanondo Rosh (LNR)—An Ayurvedic Formulation,” Biology and Medicine, Vol. 2, 2010, pp. 58-63.
[25] G. P. Holloway, A. B. Thrush, G. J. Heigenhauser, N. N. Tandon, D. J. Dyck, A. Bonen and L. L. Spriet, “Skeletal Muscle Mitochondrial FAT/CD36 Content and Palmitate Oxidation Are Not Decreased in Obese Women,” American Journal of Physiology—Endocrinology and Metabolism, Vol. 292, No. 6, 2007, pp. E1782-E1789. doi:10.1152/ajpendo.00639.2006
[26] S. L. Carter, C. D. Rennie, S. J. Hamilton and M. A. Tarnopolsky, “Changes in Skeletal Muscle in Males and Females Following Endurance Training,” Canadian Journal of Physiology and Pharmacology, Vol. 79, No. 5, 2001, pp. 386-392. doi:10.1139/y01-008
[27] G. P. Holloway, A. Bonen and L. L. Spriet, “Regulation of Skeletal Muscle Mitochondrial Fatty Acid Metabolism in Lean And Obese Individuals,” The American Journal of Clinical Nutrition, Vol. 89, No. 1, 2009, pp. 455S-462S. doi:10.3945/ajcn.2008.26717B
[28] S. R. Colberg, J. A. Simoneau, F. L. Thaete and D. E. Kelley, “Skeletal Muscle Utilization of Free Fatty Acids in Women with Visceral Obesity,” The Journal of Clinical Investigation, Vol. 95, No. 4, 1995, pp. 1846-1853. doi:10.1172/JCI117864
[29] J. Y. Kim, R. C. Hickner, R. L. Cortright, G. L. Dohm and J. A. Houmard, “Lipid Oxidation Is Reduced in Obese Human Skeletal Muscle,” American Journal of Physiology—Endocrinology and Metabolism, Vol. 279, No. 5, 2000, pp. E1039-E1044.
[30] H. Karlic, S. Lohninger, T. Koeck and A. Lohninger, “Dietary L-Carnitine Stimulates Carnitine Acyltransferases in the Liver of Aged Rats,” Journal of Histochemistry & Cytochemistry, Vol. 50, No. 2, 2002, pp. 205-212. doi:10.1177/002215540205000208
[31] N. Jiang, G. Zhang, H. Bo, J. Qu, G. Ma, D. Cao, L. Wen, S. Liu, L. L. Ji and Y. Zhang, “Upregulation of Uncoupling Protein-3 in Skeletal Muscle during Exercise: A Potential Antioxidant Function,” Free Radical Biology and Medicine, Vol. 46, No. 2, 2009, pp. 138-145. doi:10.1016/j.freeradbiomed.2008.09.026
[32] S. L. Wijers, P. Schrauwen, W. H. Saris and W. D. Marken Lichtenbelt, “Human Skeletal Muscle Mitochondrial Uncoupling Is Associated with Cold Induced Adaptive Thermogenesis,” PLoS One, Vol. 3, No. 3, 2008, p. e1777.
[33] G. Riccardi, R. Giacco and A. A. Rivellese, “Dietary Fat, Insulin Sensitivity and the Metabolic Syndrome,” Clinical Nutrition, Vol. 23. No. 4, pp. 447-456. doi:10.1016/j.clnu.2004.02.006
[34] A. P. van de Woestijne, H. Monajemi, E. Kalkhoven and F. L. Visseren, “Adipose Tissue Dysfunction and Hypertriglyceridemia: Mechanisms and Management,” Obesity Reviews, Vol. 12, No. 10, 2011, pp. 829-840. doi:10.1111/j.1467-789X.2011.00900.x
[35] S. Costford, A. Gowing and M. E. Harper, “Mitochondrial Uncoupling as a Target in the Treatment of Obesity,” Current Opinion in Clinical Nutrition & Metabolic Care, Vol. 10, No. 6, 2007, pp. 671-678. doi:10.1097/MCO.0b013e3282f0dbe4
[36] T. Goto, A. Teraminami, J. Y. Lee, K. Ohyama, K. Funakoshi, Y. I. Kim, S. Hirai, T. Uemura, R. Yu, N. Takahashi and T. Kawada, “Tiliroside, a Glycosidic Flavonoid, Ameliorates Obesity-Induced Metabolic Disorders via Activation of Adiponectin Signaling Followed by Enhancement of Fatty Acid Oxidation in Liver And Skeletal Muscle in Obese-Diabetic Mice,” The Journal of Nutritional Biochemistry, Vol. 23, No. 7, 2012, pp. 768-776. doi:10.1016/j.jnutbio.2011.04.001
[37] M. F. Mahomoodally, A. Gurib-Fakim and A. H. Subratty, “Effect of exogenous ATP on Momordica charantia Linn. (Cucurbitaceae) Induced Inhibition of D-Glucose, L-Tyrosine and Fluid Transport across Rat Everted Intestinal Sacs in Vitro,” Journal of Ethnopharmacology, Vol. 110, No. 2, 2007, pp. 257-263. doi:10.1016/j.jep.2006.09.020
[38] S. M. Grundy, “Metabolic Syndrome Pandemic,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 28, No. 4, 2008, pp. 629-636. doi:10.1161/ATVBAHA.107.151092

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.