Electrically-Conductive Composite Nanomaterial with Multi-Walled Carbon Nanotubes


Specific conductivity of the composite nanomaterial layers with micron and submicron dimensions, consisting of carboxymethyl cellulose (CMC) and multiwalled carbon nanotubes (MWCNT) was investigated. Ultradispersed aqueous suspension was deposited on soft (aluminum foil, plates made from polyester and polyimide, cotton fabric, office paper) and solid (coverslip, silicon wafers with silicon oxide layer) substrates by silk-screen printing. Electrical resistance was measured by four-probe method and by the method of square on surface from which the conductivity and conductivity per square of surface were calculated taking into account layer’s geometric dimensions. Specific conductivity of the layers with thickness range 0.5 - 5 μm was  ~1.2×104÷4×104 S/m, and max conductivity per square was ~ 0.2 S. Investigated nanomaterial is attractive to electronic and biomedical applications.

Share and Cite:

L. Ichkitidze, V. Podgaetsky, S. Selishchev, E. Blagov, V. Galperin, Y. Shaman, A. Pavlov and E. Kitsyuk, "Electrically-Conductive Composite Nanomaterial with Multi-Walled Carbon Nanotubes," Materials Sciences and Applications, Vol. 4 No. 5A, 2013, pp. 1-7. doi: 10.4236/msa.2013.45A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Grobert, “Carbon Nanotubes: Becoming Clean,” Materials Today, Vol. 10, No. 1-2, 2007, pp. 28-35. doi:10.1016/S1369-7021(06)71789-8
[2] Z. W. Pan, S. S. Xie, B. Chang, et al., “Very Long Carbon Nanotubes,” Nature, Vol. 394, 1998, pp. 631-632. doi:10.1038/29206
[3] Q. Ngo, A. M. Cassell, A. J. Austin, et al., “Characteristics of Aligned Carbon Nanofibers for Interconnect via Applications,” IEEE Electron Device Letters, No. 4, 2006, pp. 221-224. doi:10.1109/LED.2006.870865
[4] D. Fabris, T. Saito, T. Yamada, X. Sun, P. Wilhite and C. Y. Yang, “Current Capacity and Thermal Transport in Carbon Nanofiber Interconnects,” 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009, pp. 848-853. http://doi.ieeecomputersociety.org/10.1109/NEMS.2009.5068708
[5] Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan and E. Barrera, “Iodine Doped Carbon Nanotube Cables Exceeding Specific Electrical Conductivity of Metals,” Scientific Re ports, Vol. 1, 2011, p. 83. doi:10.1038/srep00083
[6] S. Mukoyama, M. Yagi, H. Hirata, M. Suzuki, S. Nagaya, N. Kashima and Y. Shiohara, “Development of YBCO High-c Superconducting Power Cables,” Furukawa Review, No. 35, 2009, pp. 18-22.
[7] D. Wang, D. Song, C. Liu, W. Wu and S. Fan, “Highly Oriented Carbon Nanotube Papers Made of Aligned Carbon Nanotubes,” Nanotechnology, Vol. 19, No. 7, 2008, Article ID: 075609. doi:10.1088/0957-4484/19/7/075609
[8] J. M. Hone, C. Llaguno, N. M. Nemes, A. T. Johnson, E. J. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smalley, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,” Applied Physics Letters, Vol. 77, No. 5, 2000, pp. 666-668. doi:10.1063/1.127079
[9] M.-Y. Tsai, C.-Y. Yu, C.-H. Yang, N.-H. Tai, T.-P. Perng, C.-M. Tu, Z. H. Khan, Y.-C. Liao and C.-C. Chi, “Electrical Transport Properties of Individual Disordered Multiwalled Carbon Nanotubes,” Applied Physics Letters, Vol. 89, No. 19, 2006, Article ID: 192115. doi:10.1063/1.2387875
[10] K. Yang, J. He, P. Puneet, Z. Su, M. J. Skove, J. Gaillard, T. M. Tritt and A. M. Rao, “Tuning Electrical and Thermal Connectivity in Multiwalled Carbon Nanotube Buckypaper,” Journal of Physics: Condensed Matter, Vol. 22, No. 33, 2010, Article ID: 334215. doi:10.1088/0953-8984/22/33/334215
[11] H. J. Li, W. G. Lu, J. J. Li, X. D. Bai and C. Z. Gu “Measurements of the Current through a Single Multiwalled Carbon Nanotube Demonstrate a High Conduction Capacity, Which Would Be Important if Such Tubes Were Used in Integrated Circuits,” Applied Physics Letters, Vol. 95, No. 8, 2005, Article ID: 086601. doi:10.1103/PhysRevLett.95.086601
[12] P. Kim, L. Shi, A. Majumdar and P. L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters, Vol. 87, No. 21, 2001, Article ID: 215502. doi:10.1103/PhysRevLett.87.215502
[13] R. Zhang, A. Dowden, M. Baxendale and T. Peijs, “Conductive Network Formation in the Melt of Carbon Nanotube Thermoplastic Polyurethane Composite,” Composite Science and Technology, Vol. 69, No. 10, 2009, pp. 14991504. doi:10.1016/j.compscitech.2008.11.039
[14] L. P. Ichkitidze and V. M. Podgaetsky, O. V. Ponomareva, and S. V. Selishchev, “Mechanical Properties of Bulk Nanocomposite Obtained by Laser Irradiation”, Izvestiya VUZov. Physica (Russia), Vol. 53, No. 2-3, 2010, pp. 125-129.
[15] L. P. Ichkitidze and I. V. Komlev, “Carbon Nanotubes and Composite Nanomaterials: Toxicity,” In: Lasers in Science, Engineering, Medicine. Sat. Scientific Papers, edited by VA Petrov, a society named AS Popov AS Popov (Russia), No. 21, 2010, pp. 103-113.
[16] L. P. Ichkitidze, T. S. Ryndina, S. V. Selishchev, O. V. Ponomareva, L. V. Tabulina, B. G. Shulizky, V. A. Galperin, Y. P. Shaman and E. V. Blagov, “Bulk Composite Nanomaterial Based on Protein and Multiwall Carbon Nanotubes,” Nano and Microsystems Technique (Russia), No. 3, 2012, pp. 13-19.
[17] Y. V. Kornushin, “About Effective Conductivity of Composite Materials,” Laters in Journal of Technical Physics (Russia), Vol.36, No. 9, 2010, pp. 50-53.
[18] A. S. Lobach, L. I. Buravov, N. G. Spitzina, A. V. Elezky, A. P. Dementev and K. I. Maslakov, “The Study of Electrical Resistivity of the Films of Single-Walled Carbon Nanotubes at Temperature Ranges 4.2-290 К,” High Energy Chemistry (Russia), Vol. 45, No. 4, 2011, pp. 360366.
[19] A. M. Heintz, An-C. Christiaen, R. B. Vijayendran, D. J. Elhard, R. S. Lalgudi, W. B. Robbins, A. b. Gupta and J. Cafmeye, “Electrical Conductive Coating Composition,” US Patent 2010/0126981 A1, 2010.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.