Preparation of Chiral Hydroxy Esters Using Actinobacteria: Biocatalyst Activity of Marine-Derived Micromonospora and Streptomyces Strains


To research the potential ability of marine-derived actinomycetes to act as biocatalysts, 8 Micromonospora strains and 5 Streptomyces strains were screened. Two recommended media (227 and 1076 media) and 2 modified media (1076-25% and P-1076-25% media) for liquid culture of these marine-derived actinomycetes were tested. As a result, 2 Micromonospora strains (Micromonospora sp. NBRC107096 and 107097) cultured with the 1076-25% medium and 2 Streptomyces strains (Streptomyces tateyamensis NBRC105048 and Streptomyces sp. NBRC105896) cultured with P-1076-25% medium showed a good growth. The stereoselective reduction of α-keto esters using these 4 actinomycetes was tested. As a result, it was found that these strains had a reducing activity toward various α-keto esters. The introduction of L-glutamate or sucrose as an additive remarkably increased the conversion ratios in the reduction of substrates by the Micromonospora strain. Furthermore, in the presence of L-alanine, Streptomyces tateyamensis NBRC105048 reduced ethyl pyruvate, ethyl 2-oxobutanoate, ethyl 2-oxopentanoate, ethyl 2-oxohexanoate, and ethyl 3-methyl-2-oxobutyrate to the corresponding α-hydroxy ester with a high conversion ratio and with excellent enantiomeric excess. Thus, we found that these marine-derived actinomycetes have great potential to be used as biocatalysts for stereoselective reduction of carbonyl compounds.

Share and Cite:

K. Ishihara, A. Fujita, A. Sakiyama, Y. Kobayashi, K. Hori, K. Maruike, N. Masuoka, N. Nakajima and H. Hamada, "Preparation of Chiral Hydroxy Esters Using Actinobacteria: Biocatalyst Activity of Marine-Derived Micromonospora and Streptomyces Strains," Open Journal of Applied Sciences, Vol. 3 No. 1, 2013, pp. 116-122. doi: 10.4236/ojapps.2013.31017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. P. Stackebrandt, “Defining Taxonomic Ranks,” In: M. Dworkin, Ed., The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, Springer Verlag, New York, 2000.
[2] M. Ventura, C. Canchaya, A. Tauch, G. Chandra, G. F. Fitzgerald, K. F. Chater and D. van Sinderen, “Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum,” Microbiology and Molecular Biology Reviews, Vol. 71, No. 3, 2007, pp. 495-548. doi:10.1128/MMBR.00005-07
[3] A. T. Bull, A. C. Ward and M. Goodfellow, “Search and Discovery Strategies for Biotechnology: The Paradigm Shift,” Microbiology and Molecular Biology Reviews, Vol. 64, No. 3, 2000, pp. 573-606. doi:10.1128/MMBR.64.3.573-606.2000
[4] D. J. Newman and R. T. Hill, “New Drugs from Marine Microbes: The Tide Is Turning,” Journal of Industrial Microbiology and Biotechnology, Vol. 33, No. 7, 2006, pp. 539-544. doi:10.1007/s10295-006-0115-2
[5] J. Solecka, J. Zajko, M. Postek and A. Rajnisz, “Biologically Active Secondary Metabolites from Actinomycetes,” Central European Journal of Biology, Vol. 7, No. 3, 2012, pp. 373-390. doi:10.2478/s11535-012-0036-1
[6] J. Bérdy, “Bioactive Microbial Metabolites,” Journal of Antibiotics, Vol. 58, No. 1, 2005, pp. 1-26. doi:10.1038/ja.2005.1
[7] W. R. Strohl, “Antimicrobials,” In: A. T. Bull, Ed., Mi crobial Diversity and Bioprospecting, ASM Press, Washington, 2004, pp. 336-355.
[8] C. Olano, C. Méndez and J. A. Salas, “Antitumour Com pounds from Marine Actinomycetes,” Marine Drugs, Vol. 7, No. 2, 2009, pp. 210-248. doi:10.3390/md7020210
[9] J. Mann, “Natural Products as Immunosuppressive Agents,” Natural Products Reports, Vol. 18, No. 4, 2001, pp. 417 430.
[10] W. Pecznska-Czoch and M. Mordarski, “Actinomycete Enzymes,” In: M. Goodfellow, S. T. Williams and M. Mordarski, Eds., Actinomycetes in Biotechnology, Academic Press, London, 1988, pp. 219-283. doi:10.1016/B978-0-12-289673-6.50011-7
[11] K. Ishihara, M. Nishitani, H. Yamaguchi, N. Nakajima, T. Ohshima and K. Nakamura, “Preparation of Optically Active α-Hydroxy Esters: Stereoselective Reduction of α Keto Esters Using Thermophilic Actinomycetes,” Journal of Fermentation and Bioengineering, Vol. 84, No. 3, 1997, pp. 268-270.
[12] K. Ishihara, H. Yamaguchi, H. Hamada, N. Nakajima and K. Nakamura, “Stereocontrolled Reduction of α-Keto Es ters with Thermophilic Actinomycete, Streptomyces Ther mocyaneoviolaceus IFO14271,” Journal of Molecular Catalysis, B: Enzymatic, Vol. 10, No. 2-6, 2000, pp. 429 434. doi:10.1016/S1381-1177(03)00081-X
[13] K. Ishihara, H. Yamaguchi and N. Nakajima, “Stereose lective Reduction of Keto Esters: Thermophilic Bacteria and Microalgae as New Biocatalysts,” Journal of Molecular Catalysis, B: Enzymatic, Vol. 23, No. 2-6, 2003, pp. 171-189.
[14] K. Ishihara, M. Nishimura, K. Nakashima, N. Machii, F. Miyake, M. Nishi, M. Yoshida, N. Masuoka and N. Na kajima, “Preparation of Chiral 2-Chloromandelamide: Stereoselective Reduction of an Aromatic α-Keto Amide with Actinomycete,” Biochemistry Insights, Vol. 3, 2010, pp. 19-24.
[15] S. T. Williams, M. Goodfellow and G. Alderson, “Genus Streptomyces Waksman and Henrich 1943, 339AL,” In: S. T. Williams, M. E. Sharpe and J. G. Holt, Eds., Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore, 1989, pp. 2453-2492.
[16] J. W.-H. Li and J. C. Vederas, “Drug Discovery and Natural Products: End of an Era or an Endless Frontier?” Science, Vol. 325, No. 5937, 2009, pp. 161-165. doi:10.1126/science.1168243
[17] W. Fenical and P. R. Jensen, “Developing a New Re source for Drug Discovery: Marine Actinomycete Bacteria,” Nature Chemical Biology, Vol. 2, 2006, pp. 666-673. doi: doi:10.1038/nchembio841
[18] R. Solanki, M. Khanna and R. Lal, “Bioactive Com pounds from Marine Actinomycetes,” Indian Journal Microbiology, 2008, Vol. 48, No. 4, pp. 410-431. doi:10.1007/s12088-008-0052-z
[19] S. Dharmaraj, “Marine Streptomyces as a Novel Source of Bioactive Substances,” World Journal Microbiology and Biotechnology, Vol. 26, No. 12, 2010, pp. 2123-2139.
[20] S. T. Khan, H. Komaki, K. Motohashi, I. Kozone, A. Mukai, M. Takagi and K. Shin-Ya, “Streptomyces Associated with a Marine Sponge Haliclona sp.; Biosynthetic Genes for Secondary Metabolites and Products,” Enviro mental Microbiology, Vol. 13, No. 2, 2011, pp. 391-403.
[21] P. G. Williams, E. D. Miller, R. N. Asolkar, P. R. Jensen and W. Fenical, “Arenicolides A-C, 26-Membered Ring Macrolides from the Marine Actinomycete Salinispora arenicola,” Journal of Organic Chemistry, Vol. 72, No. 14, 2007, pp. 5025-5034. doi:10.1021/jo061878x
[22] R. N. Asolkor, T. N. Kirkland, P. R. Jensen and W. Feni cal, “Arenimycin, an Antibiotic Effective against Ri fampin and Methicillin-Resistant Staphylococcus aureus from the Marine Actinomycete Salinispora arenicola,” Journal of Antibiotics, Vol. 63, No. 1, 2010, pp. 37-39. doi:10.1038/ja.2009.114
[23] K. Ishihara, H. Nagai, K. Takahashi, M. Nishiyama and N. Nakajima, “Stereoselective Reduction of α-Keto Ester and α-Keto Amide with Marine Actinomycetes, Salinis pora Strains, as Novel Biocatalysts,” Biochemistry In sights, Vol. 4, 2011, pp. 29-33. doi:10.4137/BCI.S7877
[24] K. Nakamura, K. Inoue, K. Ushio, S. Oka and A. Ohno, “Stereochemical Control on Yeast Reduction of α-Keto Esters. Reduction by Immobilized Bakers’ Yeast in He xane,” Journal of Organic Chemistry, Vol. 53, No. 11, 1998, pp. 2589-2593. doi:10.1021/jo00246a035
[25] Y. Kawai, S. Kondo, M. Tsujimoto, K. Nakamura and A. Ohno, “Stereochemical Control in Microbial Reduction. XXIII. Thermal Treatment of Bakers’ Yeast for Control ling the Stereoselectivity of Reductions,” Bulletin of the Chemical Society of Japan, Vol. 67, No. 8, 1994, pp. 2244-2247. doi:10.1246/bcsj.67.2244
[26] Y. Kawai, K. Takanobe and A. Ohno, “Stereochemical Control in Microbial Reduction. XXV. Additives Con trolling Diastereoselectivity in a Microbial Reduction of ethyl 2-Methyl-3-Oxobutanoate,” Bulletin of Chemical Society of Japan, Vol. 68, No. 1, 1995, pp. 285-288. doi:10.1246/bcsj.68.285
[27] K. Nakamura, S. Kondo, Y. Kawai, K. Hida, K. Kitano and A. Ohno, “Enantio and Regioselective Reduction of α-Diketones by Baker’S Yeast,” Tetrahedron: Asymmetry, Vol. 7, No. 2, 1996, pp. 409-412. doi:10.1016/0957-4166(96)00020-1

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.