Monitoring Recreational Waters: How to Integrate Environmental Determinants


Recreational waters are associated with a higher risk of disease for people engaged in activities that bring them into contact with these waters. The primary cause of contamination of recreational waters is fecal microorganisms, which may originate from various sources and involve several modulating factors, making it a complex public health and en- vironmental issue. Monitoring recreational water quality should include two key components: Microbial water testing and monitoring environmental determinants associated with higher risks of contamination. Conducting both activities provides the foundation for a comprehensive assessment according to risk and the actual level of fecal pollution and thus could promote good management actions to ensure safe water quality. Nevertheless, monitoring of environmental determinants is rarely fully integrated in monitoring programs and is also harder to achieve, especially when water pol- lution is mainly associated with nonpoint sources. In order to achieve identification and monitoring of environmental determinants associated with fecal contamination of recreational waters, some specific steps should be followed and some questions must be answered. The objective of this review article is to present current knowledge on this topic and to suggest and discuss recommendations. Potential sources of contamination and factors able to modulate them should be identified and measured after the geographical area influencing fecal contamination of recreational water has been delineated. Statistical models have been developed to identify the relative importance of these environmental characteristics on fecal pollution of recreational waters but they do not allow for a full comprehension of the exact processes leading to this pollution, thus other methods should also be used to better understand these processes.

Share and Cite:

P. Turgeon, "Monitoring Recreational Waters: How to Integrate Environmental Determinants," Journal of Environmental Protection, Vol. 3 No. 8A, 2012, pp. 798-808. doi: 10.4236/jep.2012.328095.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. B. Rose, P. R. Epstein, E. K. Lipp, B. H. Sherman, S. M. Bernard and J. A. Patz, “Climate Variability and Change in the United States: Potential Impacts on Water- and Foodborne Diseases Caused by Microbiologic Agents [Review],” Environmental Health Perspectives, Vol. 109, Suppl. 2, 2001, pp. 211-221.
[2] Intergovernmental Panel on Climate Change, “Climate Change 2007: Synthesis Report,” Valencia, Spain, 2007.
[3] A. Pruss, “Review of Epidemiological Studies on Health Effects from Exposure to Recreational Water,” International Journal of Epidemiology, Vol. 27, No. 1, 1998, pp. 1-9. doi:10.1093/ije/27.1.1
[4] K. A. Feldman, J. C. Mohle-Boetani, J. Ward, K. Furst, S. L. Abbott, D. V. Ferrero, A. Olsen and S. B. Werner, “A Cluster of Escherichia coli O157: Nonmotile Infections Associated with Recreational Exposure to Lake Water,” Public Health Reports, Vol. 117, No. 4, 2002, pp. 380- 385.
[5] M. G. Bruce, M. B. Curtis, M. M. Payne, R. K. Gautom, E. C. Thompson, A. L. Bennett and J. M. Kobayashi, “Lake-Associated Outbreak of Escherichia coli O157:H7 in Clark County, Washington, August 1999,” Archives of Pediatrics & Adolescent Medicine, Vol. 157, No. 10, 2003, pp. 1016-1021. doi:10.1001/archpedi.157.10.1016
[6] A. Wiedenmann , P. Kruger, K. Dietz, J. M. Lopez-Pila, R. Szewzyk and K. Botzenhart, “A Randomized Controlled Trial Assessing Infectious Disease Risks from Bathing in Fresh Recreational Waters in Relation to the Concentration of Escherichia coli, Intestinal Enterococci, Clostridium perfringens and Somatic coliphages,” Environmental Health Perspectives, Vol. 114, No. 2, 2006, pp. 228-236. doi:10.1289/ehp.8115
[7] B. Sartorius, Y. Andersson, I. Velicko, B. De Jong, M. L?fdahl, K.-O. Hedlund, G. Allestam, C. Wangsell, O. Bergstedt, P. Horal, P. Ulleryd and A. Soderstrom, “Outbreak of Norovirus in V?stra G?taland Associated with Recreational Activities at Two Lakes during August 2004,” Scandinavian Journal of Infectious Diseases, Vol. 39, No. 4, 2007, pp. 323-331. doi:10.1080/00365540601053006
[8] J. M. Fleisher, L. E. Fleming, H. M. Solo-Gabriele, J. K. Kish, C. D. Sinigalliano, L. Plano, S. M. Elmir, J. D. Wang, K. Withum, T. Shibata, M. L. Gidley, A. Abdelzaher, G. Q. He, C. Ortega, X. F. Zhu, M. Wright, J. Hollenbeck and L. C. Backer, “The BEACHES Study: Health Effects and Exposures from Non-Point Source Microbial Contaminants in Subtropical Recreational Marine Waters,” International Journal of Epidemiology, Vol. 39, No. 5, 2010, pp. 1291-1298. doi:10.1093/ije/dyq084
[9] J. W. Santo Domingo, S. C. Siefring and R. A. Haugland, “Real-Time PCR Method to Detect Enterococcus faecalis in Water,” Biotechnology Letters, Vol. 25, No. 3, 2003, pp. 261-265. doi:10.1023/A:1022303118122
[10] T. J. Wade, R. L. Calderon, E. Sams, M. Beach, K. P. Brenner, A. H. Williams and A. P. Dufour, “Rapidly Measured Indicators of Recreational Water Quality Are Predictive of Swimming-Associated Gastrointestional Illness,” Environmental Health Perspectives, Vol. 114, No. 1, 2006, pp. 24-28. doi:10.1289/ehp.8273
[11] G. A. Olyphant and R. L. Whitman, “Elements of a Predictive Model for Determining Beach Closures on a Real Time Basis: The Case of 63rd Street Beach Chicago,” Environmental Monitoring & Assessment, Vol. 98, No. 1-3, 2004, pp. 175-190. doi:10.1023/B:EMAS.0000038185.79137.b9
[12] D. S. Francy, R. A. Darner and E. E. Bertke, “Models for Predicting Recreational Water Quality at Lake Erie Beaches,” US Geological Survey. Scientific Investigations Report 2006-5192, 2006.
[13] World Health Organization, “Guidelines for Safe Recreationnal Water Environments. Coastal and Fresh Waters,” Geneva, Switzerland, 2003,
[14] P. Turgeon, P. Michel, P. Levallois, M. Archambault and A. Ravel, “Fecal Contamination of Recreational Freshwaters: The Effect of Time-Independent Agroenvironmental Factors,” Water Quality, Exposure and Health, Vol. 3, No. 2, 2011, pp. 109-118. doi:10.1007/s12403-011-0048-5
[15] M. L. Hutchison, L. D. Walters, S. M. Avery, B. A. Synge and A. Moore, “Levels of Zoonotic Agents in British Livestock Manures,” Letters in Applied Microbiology, Vol. 39, No. 2, 2004, pp. 207-214. doi:10.1111/j.1472-765X.2004.01564.x
[16] E. M. Moriarty, L. W. Sinton, M. L. Mackenzie, N. Karki and D. R. Wood, “A Survey of Enteric Bacteria and Protozoans in Fresh Bovine Faeces on New Zealand Dairy Farms,” Journal of Applied Microbiology, Vol. 105, No. 6, 2008, pp. 2015-2025. doi:10.1111/j.1365-2672.2008.03939.x
[17] R. Calderon, M. E. and A. Dufour, “Health Effects of Swimmers and Non-Point Sources of Contaminated Water,” International Journal of Environmental Health Research, Vol. 1, 1991, pp. 21-31.
[18] J. M. Colford Jr., T. J. Wade, K. C. Schiff, C. C. Wright and J. F. Griffith, “Water Quality Indicators and the Risk of Illness at Beaches with Non-Point Sources of Fecal Contamination,” Epidemiology, Vol. 18, 2007, pp. 27-35. doi:10.1097/01.ede.0000249425.32990.b9
[19] V. P. Olivieri, K. Kawata and S. H. Lim, “Microbiological Impacts of Storm Sewer Overflows: Some Aspects of the Implication of Microbiological Indicators for Receiving Waters,” In: J. B. Ellis, Ed., Urban Discharges and Receiving Water Quality Impacts, Pergamon Press, Oxford, 1989, pp. 47-54.
[20] Environment Canada, “Wastewater Management,” Environment Canada, 2009.
[21] United States Environmental Protection Agency, “Report to Congress. Impacts and Control of CSOs and SSOs,” Washington DC, 2004.
[22] J. A. Castro-Hermida, I. Garcia-Presedo, A. Almeida, M. Gonzalez-Warleta, J. M. C. Da Costa and M. Mezo, “Contribution of Treated Wastewater to the Contamination of Recreational River Areas with Cryptosporidium spp. and Giardia duodenalis,” Water Research, Vol. 42, No. 13, 2008, pp. 3528-3538. doi:10.1016/j.watres.2008.05.001
[23] J. Marsalek and Q. Rochfort, “Urban Wet-Weather Flows: Sources of Fecal Contamination Impacting on Recreational Waters and Threatening Drinking-Water Sources,” Journal of Toxicology and Environmental Health, Vol. 67, No. 20-22, 2004, pp. 1765-7717. doi:10.1080/15287390490492430
[24] P. Payment, R. Plante and P. Cejka, “Removal of Indicator Bacteria, Human Enteric Viruses, Giardia Cysts, and Cryptosporidium Oocysts at a Large Wastewater Primary Treatment Facility,” Canadian Journal of Microbiology, Vol. 47, No. 3, 2001, pp. 188-193.
[25] C. P. Gerba, “Assessment of Enteric Pathogen Shedding by Bathers during Recreational Activity and its Impact on Water Quality,” Quantitative Microbiology, Vol. 2, No. 2000, pp. 55-68.
[26] D. Sunderland, T. K. Graczyk, L. Tamang and P. N. Breysse, “Impact of Bathers on Levels of Cryptosporidium parvum Oocysts and Giardia lamblia Cysts in Recreational Beach Waters,” Water Research, Vol. 41, No. 15, 2007, pp. 3483-3489. doi:10.1016/j.watres.2007.05.009
[27] J. Blostein, “Shigellosis from Swimming in a Park Pond in Michigan,” Public Health Reports, Vol. 106, No. 3, 1991, pp. 317-322.
[28] W. E. Keene, J. M. McAnulty, F. C. Hoesly, L. P. Williams, K. Hedberg, G. L. Oxman, T. J. Barrett, M. A. Pfaller and D. W. Fleming, “A Swimming-Associated Outbreak of Hemorrhagic Colitis Caused by Escherichia coli O157:H7 and Shigella Sonnei,” New England Journal of Medicine, Vol. 331, No. 9, 1994, pp. 579-584. doi:10.1056/NEJM199409013310904
[29] M. Iwamoto, G. Hlady, M. Jeter, C. Burnett, C. Drenzek, S. Lance, J. Benson, D. Page and P. Blake, “Shigellosis among Swimmers in a Freshwater Lake,” Southern Medical Journal, Vol. 98, No. 8, 2005, pp. 774-778. doi:10.1097/01.smj.0000172764.14147.e5
[30] T. K. Graczyk, D. Sunderland, G. N. Awantang, Y. Mashinski, F. E. Lucy, Z. Graczyk, L. Chomicz and P. N. Breysse, “Relationships among Bather Density, Levels of Human Waterborne Pathogens, and Fecal Coliform Counts in Marine Recreational Beach Water,” Journal of Parasitology Research, Vol. 106, No. 5, 2010, pp. 1103- 1108. doi:10.1007/s00436-010-1769-2
[31] S. Hill, J. M. Cheney, G. F. Taton-Allen, J. S. Reif, C. Bruns and M. R. Lappin, “Prevalence of Enteric Zoonotic Organisms in Cats,” Journal of The American Vetrinary Medical Association, Vol. 216, No. 5, 2000, pp. 687-692. doi:10.2460/javma.2000.216.687
[32] T. Hackett and M. R. Lappin, “Prevalence of Enteric Pathogens in Dogs of North-Central Colorado,” Journal of the American Animal Hospital Association, Vol. 39, 2003, pp. 52-56.
[33] L. R. Fogarty, S. K. Haack, M. J. Wolcott and R. L. Whitman, “Abundance and Characteristics of the Recreational Water Quality Indicator Bacteria Escherichia coli and Enterococci in Gull Faeces,” Journal of Applied Microbiology, Vol. 94, No. 5, 2003, pp. 865-878. doi:10.1046/j.1365-2672.2003.01910.x
[34] S. K. Haack, L. R. Fogarty and C. Wright, “Escherichia coli and Enterococci at Beaches in the Grand Traverse Bay, Lake Michigan: Sources, Characteristics, and Environmental Pathways,” Environmental Science & Technology, Vol. 37, No. 15, 2003, pp. 3275-3282. doi:10.1021/es021062n
[35] Z. Hubalek, “An Annotated Checklist of Pathogenic Microorganisms Associated with Migratory Birds [Review],” Journal of Wildlife Diseases, Vol. 40, No. 4, 2004, pp. 639-659.
[36] K. J. Meyer, C. M. Appletoft, A. K. Schwemm, K. Uzoigwe and E. J. Brown, “Determining the Source of Fecal Contamination in Recreational Waters,” Journal of Environmental Health, Vol. 68, No. 1, 2005, pp. 25-30.
[37] T. A. Edge and S. Hill, “Multiple Lines of Evidence to Identify the Sources of Fecal Pollution at a Freshwater Beach in Hamilton Harbour, Lake Ontario,” Water Research, Vol. 41, No. 16, 2007, pp. 3585-3594. doi:10.1016/j.watres.2007.05.012
[38] T. K. Graczyk, A. C. Majewska and K. J. Schwab, “The Role of Birds In dissemination of Human Waterborne Enteropathogens,” Trends in Parasitology, Vol. 24, No. 2, 2008, pp. 55-59. doi:10.1016/
[39] V. R. Simpson, “Wild Animals as Reservoirs of Infectious Diseases in the UK,” The Veterinary Journal, Vol. 163, No. 2, 2002, pp. 128-146. doi:10.1053/tvjl.2001.0662
[40] K. Handeland, L. L. Nesse, A. Lillehaug, T. Voikoren, B. Djonne and B. Bergsjo, “Natural and Experimental Salmonella typhimurium Infections in Foxes (Vulpes vulpes),” Veterinary Microbiology, Vol. 132, No. 1-2, 2008, pp. 129-134. doi:10.1016/j.vetmic.2008.05.002
[41] C. Jardine, R. J. Reid-Smith, N. Janecko, M. Allan and S. A. McEwen, “Salmonella in Racoons (Proycon lotor) in Southern Ontario, Canada,” Journal of Wildlife Diseases, Vol. 47, No. 2, 2011, pp. 344-351.
[42] R. Majdoub, C. C?té, M. Labadi, K. Guay and M. Généreux, “Impact de l’Utilisation des Engrais de Ferme sur la Qualité Microbiologique de l’eau Souterraine,” Instituts de Recherche et de Développement en Agro- Environnement, Québec, 2003.
[43] P. Chevalier, P. Levallois and P. Michel, “Infections Entériques d’Origine Hydrique Potentiellement Associées à la Production Animale: Revue de la Littérature,” Vecteur environnement, Vol. 37, No. 2, 2004, pp. 90-106.
[44] Government of Canada, “Waterborne Outbreak of Gastroenteritis Associated with a Contaminated Municipal Water Supply, Walkerton, Ontario, May-June 2000,” Canada Communicable Disease Report, Vol. 26, No. 20, 2000, pp. 170-173.
[45] J. A. Thurston-Enriquez, J. E. Gilley and B. Eghball, “Microbial Quality of Runoff Following Land Application of Cattle Manure and Swine Slurry,” Journal of Water & Health, Vol. 3, No. 2, 2005, pp. 157-171.
[46] M. C. Ramos, J. N. Quinton and S. F. Tyrrel, “Effects of Cattle Manure on Erosion Rates and Runoff Water Pollution by Faecal Coliforms,” Journal of Environmental Management, Vol. 78, No. 1, 2006, pp. 97-101. doi:10.1016/j.jenvman.2005.04.010
[47] Health Canada, “Guidelines for Canadian Recreationnal Water Quality,” Ottawa, 1992.
[48] X. P. Jiang, J. Morgan and M. P. Doyle, “Fate of Escherichia coli O157:H7 during Composting of Bovine Manure in a Laboratory-Scale Bioreactor,” Journal of Food Protection, Vol. 66, No. 1, 2003, pp. 25-30.
[49] L. M. Avery, K. Killham and D. L. Jones, “Survival of E. coli O157:H7 in Organic Wastes Destined for Land Application,” Journal of Applied Microbiology, Vol. 98, No. 4, 2005, pp. 814-22. doi:10.1111/j.1365-2672.2004.02524.x
[50] A. J. A. Vinten, J. T. Douglas, D. R. Lewis, M. N. Aitken and D. R. Fenlon, “Relative Risk of Surface Water Pollution by E. coli Derived from Faeces of Grazing Animals Compared to Slurry Application,” Soil Use & Management, Vol. 20, No. 1, 2004, pp. 13-22. doi:10.1079/SUM2004214
[51] S. M. Avery, A. Moore and M. L. Hutchison, “Fate of Escherichia coli Originating from Livestock Faeces Deposited Directly onto Pasture,” Letters in Applied Microbiology, Vol. 38, No. 5, 2004, pp. 355-359. doi:10.1111/j.1472-765X.2004.01501.x
[52] L. W. Sinton, R. R. Braithwaite, C. H. Hall and M. L. Mackenzie, “Survival of Indicator and Pathogenic Bacteria in Bovine Feces on Pasture,” Applied & Environmental Microbiology, Vol. 73, No. 24, 2007, pp. 7917- 7925. doi:10.1128/AEM.01620-07
[53] R. K. Hubbard, G. L. Newton and G. M. Hill, “Water Quality and the Grazing Animals,” Journal of animal science, Vol. 82, 2004, pp. E255-E263.
[54] P. Rodgers, C. Soulsby, C. Hunter and J. Petry, “Spatial and Temporal Bacterial Quality of a Lowland Agricultural Stream in Northeast Scotland,” The Science of the total environment, Vol. 314-316, 2003, pp. 289-302. doi:10.1016/S0048-9697(03)00061-5
[55] J. A. Entry, R. K. Hubbard, J. E. Thies and J. J. Fuhrmann, “The Influence of Vegetation in Riparian Filterstrips on Coliform Bacteria: I. Movement and Survival in Water,” Journal of Environmental Quality, Vol. 29, No. 4, 2000, pp. 1206-1214. doi:10.2134/jeq2000.00472425002900040026x
[56] R. M. Roodsari, D. R. Shelton, A. Shirmohammadi, Y. A. Pachepsky, A. M. Sadeghi and J. L. Starr, “Fecal Coliform Transport as Affected by Surface Condition,” Transactions of the ASAE, Vol. 48, No. 3, 2005, pp. 1055-1061.
[57] T. J. Sullivan, J. A. Moore, D. R. Thomas, E. Mallery, K. U. Snyder, M. Wustenberg, J. Wustenberg, S. D. Mackey and D. L. Moore, “Efficacy of Vegetated Buffers in Preventing Transport of Fecal Coliform Bacteria from Pasturelands,” Environmental Management, Vol. 40, No. 6, 2007, pp. 958-965. doi:10.1007/s00267-007-9012-3
[58] é. Gagnon and G. Gangbazo, “Efficacité des Bandes Riveraines: Analyse de la Documentation Scientifique et Perspectives,” Ministère du Développment Durable, de l’Environnement et des Parcs du Québec, Québec, 2007.
[59] C. Kao and M. Wu, “Control of Non-Point Source Pollution by a Natural Wetlands,” Water Science and Technology, Vol. 43, No. 5, 2001, pp. 169-174.
[60] A. K. Knox, A. R. Dahlgren, K. W. Tate and E. R. Atwill, “Efficacy of Natural Wetlands to Retain Nutrient, Sediment and Microbial Polluants,” Journal of Environmental Quality, Vol. 37, 2008, pp. 1837-1846. doi:10.2134/jeq2007.0067
[61] M. Matteo, T. Randhir and D. Bloniarz, “Watershed- Scale Impacts of Forest Buffers on Water Quality and Runoff in Urbanizing Environment,” Journal of Water Resources Planning and Management, Vol. 132, No. 3, 2006, pp. 144-152. doi:10.1061/(ASCE)0733-9496(2006)132:3(144)
[62] J. Abu-Ashour and H. Lee, “Transport of Bacteria on Sloping Soil Surfaces by Runoff,” Environmental Toxicology, Vol. 15, No. 2, 2000, pp. 149-153. doi:10.1002/(SICI)1522-7278(2000)15:2<149::AID-TOX11>3.0.CO;2-O
[63] C. Ferguson, A. M. D. Husman, N. Altavilla, D. Deere and N. Ashbolt, “Fate and Transport of Surface Water Pathogens in Watersheds [Review],” Critical Reviews in Environmental Science & Technology, Vol. 33, No. 3, 2003, pp. 299-361. doi:10.1080/10643380390814497
[64] I. D. Ogden, D. R. Fenlon, A. J. A. Vinten and D. Lewis, “The fate of Escherichia coli O157 in Soil and Its Potential to Contaminate Drinking Water,” International Journal of Food Microbiology, Vol. 66, No. 1-2, 2001, pp. 111-117. doi:10.1016/S0168-1605(00)00508-0
[65] D. Trevisan, J. Y. Vansteelant and J. M. Dorioz, “Survival and Leaching of Fecal Bacteria after Slurry Spreading on Mountain Hay Meadows: Consequences for the Management of Water Contamination Risk,” Water Research, Vol. 36, No. 1, 2002, pp. 275-283. doi:10.1016/S0043-1354(01)00184-1
[66] R. W. Muirhead, R. P. Collins and P. J. Bremer, “Interaction of Escherichia coli and Soil Particles in Runoff,” Applied and Environmental Microbiology, Vol. 72, No. 5, 2006, pp. 3406-3411. doi:10.1128/AEM.72.5.3406-3411.2006
[67] F. C. Curriero, J. A. Patz, J. B. Rose and S. Lele, “The Association between Extreme Precipitation and Waterborne Disease Outbreaks in the United States, 1948- 1994,” American Journal of Public Health, Vol. 91, No. 8, 2001, pp. 1194-1199. doi:10.2105/AJPH.91.8.1194
[68] D. F. Charron, M. K. Thomas, D. Waltner-Toews, J. J. Aramini, T. Edge, R. A. Kent, A. R. Maarouf and J. Wilson, “Vulnerability of Waterborne Diseases to Climate Change in Canada: A Review,” Journal of Toxicology & Environmental Health Part A, Vol. 67, No. 20-22, 2004, pp. 1667-1677. doi:10.1080/15287390490492313
[69] J. A. Patz, S. J. Vavrus, C. K. Uejio and S. L. McLellan, “Climate Change and Waterborne Disease Risk in the Great Lakes Region of the US,” American Journal of Preventive Medicine, Vol. 35, No. 5, 2008, pp. 451-458. doi:10.1016/j.amepre.2008.08.026
[70] R. L. Whitman, M. B. Nevers, G. C. Korinek and M. N. Byappanahalli, “Solar and Temporal Effects on Escherichia coli Concentration at a Lake Michigan Swimming Beach,” Applied and Environmental Microbiology, Vol. 70, No. 7, 2004, pp. 4276-4285. doi:10.1128/AEM.70.7.4276-4285.2004
[71] S. R. Crane and J. A. Moore, “Modeling Enteric Bacterial Die-Off: A Review,” Water Air soil Pollution, Vol. 27, 1986, p. 411. doi:10.1007/BF00649422
[72] J. Abu-Ashour, D. M. Joy, H. Lee, H. R. Whiteley and S. Zelin, “Transport of Microorganisms through Soil,” Water, Air, & Soil Pollution, Vol. 75, 1994, pp. 141-158. doi:10.1007/BF01100406
[73] R. C. Jamieson, R. J. Gordon, K. E. Sharples, G. W. Stratton and A. Madani, “Movement and Persistence of Fecal Bacteria in Agricultural Soils and Subsurface Drainage Water: A Review,” Canadian Biosystems Engineering, Vol. 44, No. 1, 2002, pp. 1-9.
[74] M. M. Lau, S. C. Ingham and A. R. Arment, “Survival of Faecal Indicator Bacteria in Bovine Manure Incorporated into Soil,” Letters in Applied Microbiology, Vol. 33, 2001, p. 131.
[75] L. Johnson and S. Gage, “Landscape Approaches to the Analysis of Aquatic Ecosystems,” Freshwater Biology, Vol. 37, No. 1, 1997, pp. 113-132. doi:10.1046/j.1365-2427.1997.00156.x
[76] L. Sliva and D. D. Williams, “BUFFER zone versus Whole Catchment Approaches to Studying Land Use Impact on River Water Quality,” Water Research, Vol. 35, No. 14, 2001, pp. 3462-3472. doi:10.1016/S0043-1354(01)00062-8
[77] J. Crowther, M. D. Wyer, M. Bradford, D. Kay, C. A. Francis and W. G. Knisel, “Modelling Faecal Indicator Concentrations in Large Rural Catchments Using Land Use and Topographic Data,” Journal of Applied Microbiology, Vol. 94, No. 6, 2003, pp. 962-973. doi:10.1046/j.1365-2672.2003.01877.x
[78] J. Crowther, D. Kay and M. D. Wyer, “Faecal-Indicator Concentrations in Waters Draining Lowland Pastoral Catchments in the UK: Relationships with Land Use and Farming Practices,” Water Research, Vol. 36, No. 7, 2002, pp. 1725-1734. doi:10.1016/S0043-1354(01)00394-3
[79] D. Kay, M. Wyer, J. Crowther, C. Stapleton, M. Bradford, A. McDonald, J. Greaves, C. Francis and J. Watkins, “Predicting Faecal Indicator Fluxes Using Digital Land Use Data in the UK’s Sentinel Water Framework Directive Catchment: The Ribble Study,” Water Research, Vol. 39, No. 16, 2005, pp. 3967-3981. doi:10.1016/j.watres.2005.07.006
[80] D. Kay, S. Anthony, J. Crowther, B. J. Chambers, F. A. Nicholson, D. Chadwick, C. M. Stapleton and M. D. Wyer, “Microbial Water Pollution: A Screening Tool for Initial Catchment-Scale Assessment and Source Apportionment,” Science of the Total Environment, Vol. 408, No. 23, 2010, pp. 5646-5656. doi:10.1016/j.scitotenv.2009.07.033
[81] Statistics Canada, “2006 Census,” Statistics Canada, 2007.
[82] Statistics Canada, “2006 Agriculture Census,” Statistics Canada, 2008.
[83] P. D’Arcy and R. Carignan, “Influence of Catchment Topography on Water Chemistry in Southeastern Quebec Shield Lakes,” Canadian Journal of Fisheries & Aquatic Sciences, Vol. 54, 1997, pp. 2215-2227.
[84] P. Turgeon, P. Michel, P. Levallois, P. Chevalier, D. Daignault, B. Crago, R. Irwin, S. A. McEwen, N. F. Neumann and M. Louie, “Agroenvironmental Determinants Associated with the Presence of Antimicrobial- Resistant Escherichia coli in Beach Waters in Quebec, Canada,” Zoonoses and Public Health, Vol. 58, No. 6, 2011, pp. 432-439.
[85] D. W. McKenney, M. F. Hutchinson, J. L. Kesteven and L. A. Venier, “Canada’s Plant Hardiness Zones Revisited Using Modern Climate Interpolation Techniques,” Canadian Journal of Plant Sciences, Vol. 81, 2001, pp. 129- 143.
[86] J. D. Boone, K. C. McGwire, E. W. Otteson, R. S. DeBaca, E. A. Kuhn, P. Villard, P. F. Brussard and S. C. St Jeor, “Remote Sensing and Geographic Information Systems: Charting Sin Nombre Virus Infections in Deer Mice,” Emerging Infectious Diseases, Vol. 6, No. 3, 2000, pp. 248-258.
[87] A. Leblond, A. Sandoz, G. Lefebvre, H. Zeller and D. J. Bicout, “Remote Sensing Based Identification of Environmental Risk Factors Associated with West Nile Disease in Horses in Camargue, France,” Preventive Veterinary Medicine, Vol. 79, No. 1, 2007, pp. 20-31.
[88] L. R. Beck, B. M. Lobitz and B. L. Wood, “Remote Sensing and Human Health: New Sensors and New Opportunities,” Emerging Infectious Diseases, Vol. 6, No. 3, 2000, pp. 217-227.
[89] S. Kalluri, P. Gilruth, D. Rogers and M. Szczur, “Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review Art. No. e116 [Review],” PLoS Pathogens, Vol. 3, No. 10, 2007, pp. 1361-1371.
[90] J. B. Campbell, “Introduction to Remote Sensing,” The Guilford Press, New York, 2007.
[91] Y. Zhang, B. Guindon, K. Sun and L. Sun, “Remote Sensing for Improving Understanding on Canadian Urbanization,” Canada Centre for Remote Sensing, Natural Resources Canada, 2010.
[92] J. P. Messina and K. A. Crews-Meyer, “A Historical Perspective on the Development of Remotely Sensed Data as Applied to Medical Geography,” In: D. P. Albert, W. M. Geslier and B. Levrgood, Eds., Spatial Analysis, GIS, and Remote Sensing Applications in the Health Sciences, Ann Arbor Press, Chelsea, 2000, pp. 129-146.
[93] United Nations Office for Outer Space Affairs, “Space Solutions for the World’s Problems,” Vienna, 2005.
[94] S. J. Goetz, S. D. Prince and J. Small, “Advances in Satellite Remote Sensing of Environmental Variables for Epidemiological Applications,” In: S. I. Hay, S. E. Randolph and D. J. Rogers, Eds., Remote Sensing and Geographical Information Systems in Epidemiology, Elsevier Sciences, Oxford, 2002, pp. 289-309.
[95] V. R. M. Correia, M. S. Carvalho, P. C. Sabroza and C. H. Vacsoncelos, “Remote Sensing as a Tool to Survey Endemic Diseases in Brazil,” Cad. Sa?de P?blica, Vol. 20, No. 4, 2004, pp. 891-904.
[96] B. C. Rundquist, C. J. Henrie and E. J. Grewe, “Internet Acess to Remotely Sensed Data: Satellite Imaging Made Commonplace,” Journal of Map & geography Libraries, Vol. 2, No. 2, 2006, pp. 21-30.
[97] S. N. V. Kalluri and T. J. Schmugge, “Application of Remote Sensing in Agriculture and Soil Science,” In: K. R. Krishna, Ed., Soil Fertility and Crop Production, Chapter 18, Science Publisher, Enfield, 2002, 465 p.
[98] D. Hampson, J. Crowther, I. Bateman, D. Kay, P. Posen, C. Stapleton, M. Wyer, C. Fezzi, P. Jones and J. Tzanopoulos, “Predicting Microbial Pollution Concentrations in UK Rivers in Response to Land Use Change,” Water Research, Vol. 44, No. 16, 2010, pp. 4748-4759.
[99] Canadian Federal-Provincial-Territorial Committee on Environmental and Occupational Health and the Canadian Council of Ministers of the Environment, “From Source to Tap: The Multi-Barrier Approach to Safe Drinking Water,” 2002.
[100] Ministry for the Environment, New Zealand, “Draft Users’ Guide: National Environmental Standard for Sources of Human Drinking Water,” 2012

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.