[1]
|
Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies
Molecules,
2024
DOI:10.3390/molecules29112535
|
|
|
[2]
|
Major facilitator superfamily transporter PhaT modulates the efflux and degradation of polycyclic aromatic hydrocarbons in Novosphingobium pentaromativorans US6-1
Process Biochemistry,
2024
DOI:10.1016/j.procbio.2024.04.023
|
|
|
[3]
|
Benzo(a)pyrene degradation by the interaction of
Aspergillus brasilensis
and
Sphigobacterium spiritovorum
in wastewater: optimisation and kinetic response
Environmental Technology,
2024
DOI:10.1080/09593330.2024.2428442
|
|
|
[4]
|
Sorption of petroleum hydrocarbons before transmembrane transport and the structure, mechanisms and functional regulation of microbial membrane transport systems
Journal of Hazardous Materials,
2023
DOI:10.1016/j.jhazmat.2022.129963
|
|
|
[5]
|
Microbial exopolymeric substances and biosurfactants as ‘bioavailability enhancers’ for polycyclic aromatic hydrocarbons biodegradation
International Journal of Environmental Science and Technology,
2023
DOI:10.1007/s13762-022-04068-0
|
|
|
[6]
|
Substrate-independent expression of key functional genes in Cycloclasticus pugetii strain PS-1 limits their use as markers for PAH biodegradation
Frontiers in Microbiology,
2023
DOI:10.3389/fmicb.2023.1185619
|
|
|
[7]
|
Sorption of petroleum hydrocarbons before transmembrane transport and the structure, mechanisms and functional regulation of microbial membrane transport systems
Journal of Hazardous Materials,
2023
DOI:10.1016/j.jhazmat.2022.129963
|
|
|
[8]
|
Sorption of petroleum hydrocarbons before transmembrane transport and the structure, mechanisms and functional regulation of microbial membrane transport systems
Journal of Hazardous Materials,
2023
DOI:10.1016/j.jhazmat.2022.129963
|
|
|
[9]
|
Sorption of petroleum hydrocarbons before transmembrane transport and the structure, mechanisms and functional regulation of microbial membrane transport systems
Journal of Hazardous Materials,
2023
DOI:10.1016/j.jhazmat.2022.129963
|
|
|
[10]
|
Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications
Biotechnology Advances,
2022
DOI:10.1016/j.biotechadv.2022.107952
|
|
|
[11]
|
Enhanced Biodegradation of Phenanthrene by Comamonas testosteroni Strain T in the Presence of Limiting Concentration of Triton x-100
Environmental Processes,
2022
DOI:10.1007/s40710-022-00608-5
|
|
|
[12]
|
The effects of molecular weight and orientation on the membrane permeation and partitioning of polycyclic aromatic hydrocarbons: a computational study
Physical Chemistry Chemical Physics,
2022
DOI:10.1039/D1CP04777A
|
|
|
[13]
|
Microbial exopolymeric substances and biosurfactants as ‘bioavailability enhancers’ for polycyclic aromatic hydrocarbons biodegradation
International Journal of Environmental Science and Technology,
2022
DOI:10.1007/s13762-022-04068-0
|
|
|
[14]
|
Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications
Biotechnology Advances,
2022
DOI:10.1016/j.biotechadv.2022.107952
|
|
|
[15]
|
Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications
Biotechnology Advances,
2022
DOI:10.1016/j.biotechadv.2022.107952
|
|
|
[16]
|
Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications
Biotechnology Advances,
2022
DOI:10.1016/j.biotechadv.2022.107952
|
|
|
[17]
|
In-Cell Crosslinked Enzymes: Improving Bacillus megaterium whole-cell biocatalyst stability for the decarboxylation of ferulic acid
Process Biochemistry,
2021
DOI:10.1016/j.procbio.2021.07.020
|
|
|
[18]
|
In-Cell Crosslinked Enzymes: Improving Bacillus megaterium whole-cell biocatalyst stability for the decarboxylation of ferulic acid
Process Biochemistry,
2021
DOI:10.1016/j.procbio.2021.07.020
|
|
|
[19]
|
In-Cell Crosslinked Enzymes: Improving Bacillus megaterium whole-cell biocatalyst stability for the decarboxylation of ferulic acid
Process Biochemistry,
2021
DOI:10.1016/j.procbio.2021.07.020
|
|
|
[20]
|
In-Cell Crosslinked Enzymes: Improving Bacillus megaterium whole-cell biocatalyst stability for the decarboxylation of ferulic acid
Process Biochemistry,
2021
DOI:10.1016/j.procbio.2021.07.020
|
|
|