|
[1]
|
Optimising flywheel energy storage systems for enhanced windage loss reduction and heat transfer: A computational fluid dynamics and ANOVA-based approach
Energy Reports,
2025
DOI:10.1016/j.egyr.2024.12.048
|
|
|
|
|
[2]
|
Advances in Cooling Technologies for Electric Vehicle Drive Motors, Reducers, and Inverters: A Comprehensive Review
Energy Technology,
2025
DOI:10.1002/ente.202401691
|
|
|
|
|
[3]
|
A comprehensive overview of high-speed solid-rotor induction machines: Applications, classification, and multi-physics modeling
International Journal of Electrical Power & Energy Systems,
2025
DOI:10.1016/j.ijepes.2025.110520
|
|
|
|
|
[4]
|
Optimising Flywheel Energy Storage Systems: The Critical Role of Taylor–Couette Flow in Reducing Windage Losses and Enhancing Heat Transfer
Energies,
2024
DOI:10.3390/en17174466
|
|
|
|
|
[5]
|
The Fan Design Optimization for Totally Enclosed Type Induction Motor with Experimentally Verified CFD-Based MOGA Simulations
Arabian Journal for Science and Engineering,
2024
DOI:10.1007/s13369-024-09134-y
|
|
|
|
|
[6]
|
Combined Effects of Axial Flow and High System Rotation on the Fluid Dynamics of Taylor-Couette-Poiseuille Flow
Journal of ETA Maritime Science,
2024
DOI:10.4274/jems.2024.67689
|
|
|
|
|
[7]
|
Enhancing vehicular performance with flywheel energy storage systems: Emerging technologies and applications
Journal of Energy Storage,
2024
DOI:10.1016/j.est.2024.114386
|
|
|
|
|
[8]
|
Action mechanism of axial flow on windage loss in open shaft‐type gap with CO2
Energy Science & Engineering,
2024
DOI:10.1002/ese3.1647
|
|
|
|
|
[9]
|
Heat Transfer Models and Measurements of Brushless DC Motors for Small UASs
Aerospace,
2024
DOI:10.3390/aerospace11050401
|
|
|
|
|
[10]
|
Analysis of Standby Power in an Enclosed High-Speed Flywheel Energy Storage System Using the CFD-ANOVA Approach
SAE Technical Paper Series,
2023
DOI:10.4271/2023-32-0069
|
|
|
|
|
[11]
|
Multi-Physics Coupled Analysis and Global Optimization of High Power Density Permanent Magnet Machines
2023 IEEE 6th Student Conference on Electric Machines and Systems (SCEMS),
2023
DOI:10.1109/SCEMS60579.2023.10379413
|
|
|
|
|
[12]
|
A critical review on thermal management technologies for motors in electric cars
Applied Thermal Engineering,
2022
DOI:10.1016/j.applthermaleng.2021.117758
|
|
|
|
|
[13]
|
A critical review on thermal management technologies for motors in electric cars
Applied Thermal Engineering,
2022
DOI:10.1016/j.applthermaleng.2021.117758
|
|
|
|
|
[14]
|
Numerical analysis of heat transfer in electric motor casing made of ceramic reinforced aluminium matrix composites
Materials Today: Proceedings,
2022
DOI:10.1016/j.matpr.2021.10.307
|
|
|
|
|
[15]
|
Supercritical carbon dioxide Taylor–Couette–Poiseuille flow heat transfer
International Journal of Heat and Mass Transfer,
2022
DOI:10.1016/j.ijheatmasstransfer.2021.122204
|
|
|
|
|
[16]
|
Numerical Investigations on the Effects of Slot Openings on Friction Losses in the Air Gap of Electrical Machines
2022 International Conference on Electrical Machines (ICEM),
2022
DOI:10.1109/ICEM51905.2022.9910701
|
|
|
|
|
[17]
|
Model improvement for shaft-type windage loss with CO2
The Journal of Supercritical Fluids,
2022
DOI:10.1016/j.supflu.2022.105747
|
|
|
|
|
[18]
|
Effects of Surface Roughness on Windage Loss and Flow Characteristics in Shaft-Type Gap with Critical CO2
Applied Sciences,
2022
DOI:10.3390/app122412631
|
|
|
|
|
[19]
|
Supercritical carbon dioxide Taylor–Couette–Poiseuille flow heat transfer
International Journal of Heat and Mass Transfer,
2022
DOI:10.1016/j.ijheatmasstransfer.2021.122204
|
|
|
|
|
[20]
|
Model improvement for shaft-type windage loss with CO2
The Journal of Supercritical Fluids,
2022
DOI:10.1016/j.supflu.2022.105747
|
|
|
|
|
[21]
|
A critical review on thermal management technologies for motors in electric cars
Applied Thermal Engineering,
2022
DOI:10.1016/j.applthermaleng.2021.117758
|
|
|
|
|
[22]
|
A critical review on thermal management technologies for motors in electric cars
Applied Thermal Engineering,
2022
DOI:10.1016/j.applthermaleng.2021.117758
|
|
|
|
|
[23]
|
Effects of Surface Roughness on Windage Loss and Flow Characteristics in Shaft-Type Gap with Critical CO2
Applied Sciences,
2022
DOI:10.3390/app122412631
|
|
|
|
|
[24]
|
Flow and heat transfer simulation with a thermal large eddy lattice Boltzmann method in an annular gap with an inner rotating cylinder
International Journal of Modern Physics C,
2019
DOI:10.1142/S012918311950013X
|
|
|
|
|
[25]
|
Modeling and Analysis of Electric Motors: State-of-the-Art Review
IEEE Transactions on Transportation Electrification,
2019
DOI:10.1109/TTE.2019.2931123
|
|
|
|
|
[26]
|
Comprehension and Estimation of Windage Losses in Rotor Slotted Air Gaps of Electrical Machines using CFD-LES methods
2019 IEEE Energy Conversion Congress and Exposition (ECCE),
2019
DOI:10.1109/ECCE.2019.8912698
|
|
|
|
|
[27]
|
An Investigation Into the Coupling of Magnetic and Thermal Analysis for a Wound-Rotor Synchronous Machine
IEEE Transactions on Industrial Electronics,
2018
DOI:10.1109/TIE.2017.2756597
|
|
|
|
|
[28]
|
Forced Air Cooling of a High-Speed Permanent Magnet Motor
2018 XIII International Conference on Electrical Machines (ICEM),
2018
DOI:10.1109/ICELMACH.2018.8506723
|
|
|
|
|
[29]
|
Experimental and Numerical Study of Windage Losses in the Narrow Gap Region of a High-Speed Electric Motor
Fluids,
2018
DOI:10.3390/fluids3010022
|
|
|
|
|
[30]
|
Experimental and Numerical Study of Windage Losses in the Narrow Gap Region of a High-Speed Electric Motor
Fluids,
2018
DOI:10.3390/fluids3010022
|
|
|
|
|
[31]
|
Air-Gap Heat Transfer in Rotating Electrical Machines: A Parametric Study
Energy Procedia,
2017
DOI:10.1016/j.egypro.2017.12.343
|
|
|
|
|
[32]
|
Air-gap Flow and Thermal Analysis of Rotating Machines using CFD
Energy Procedia,
2017
DOI:10.1016/j.egypro.2017.03.1045
|
|
|
|
|
[33]
|
Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines
Applied Energy,
2017
DOI:10.1016/j.apenergy.2017.07.011
|
|
|
|
|
[34]
|
Estimation of windage losses inside very narrow air gaps of high speed electrical machines without an internal ventilation using CFD methods
2016 XXII International Conference on Electrical Machines (ICEM),
2016
DOI:10.1109/ICELMACH.2016.7732904
|
|
|
|
|
[35]
|
Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets
Energies,
2016
DOI:10.3390/en9121009
|
|
|
|
|
[36]
|
Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets
Energies,
2016
DOI:10.3390/en9121009
|
|
|
|