[1]
|
Silver(I) complexes with antifungal drug econazole: Structural characterization and antimicrobial activity study
Journal of Molecular Structure,
2025
DOI:10.1016/j.molstruc.2024.140118
|
|
|
[2]
|
Inhibition of Pseudomonas aeruginosa Biofilm Formation Using Silver Nanoparticles
Cureus,
2025
DOI:10.7759/cureus.77848
|
|
|
[3]
|
Detection and Evaluation of Multidrug Resistance and the Presence of Virulence Genes Related to the Formation of ompA, epsA, and Bap Biofilms in Clinical Isolates of Acinetobacter baumannii in Tehran, Iran
Journal of Kerman University of Medical Sciences,
2025
DOI:10.34172/jkmu.2763
|
|
|
[4]
|
Sustainable strategy of biowaste into graphene‐based zinc oxide nanocomposite using green nanotechnology for topical applications
Biotechnology and Applied Biochemistry,
2024
DOI:10.1002/bab.2702
|
|
|
[5]
|
A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces
Biomaterials,
2024
DOI:10.1016/j.biomaterials.2024.122527
|
|
|
[6]
|
A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces
Biomaterials,
2024
DOI:10.1016/j.biomaterials.2024.122527
|
|
|
[7]
|
Bio-waste valorization to formulate an eco-friendly reduced graphene oxide based bio-gel for clinical applications
Environment, Development and Sustainability,
2024
DOI:10.1007/s10668-024-04700-8
|
|
|
[8]
|
An In Vitro Study on the Application of Silver-Doped Platelet-Rich Plasma in the Prevention of Post-Implant-Associated Infections
International Journal of Molecular Sciences,
2024
DOI:10.3390/ijms25094842
|
|
|
[9]
|
Antibacterial Activity of Ag+ on ESKAPEE Pathogens In Vitro and in Blood
Military Medicine,
2024
DOI:10.1093/milmed/usae166
|
|
|
[10]
|
Antibacterial and cytocompatible silver coating for titanium Boston Keratoprosthesis
Frontiers in Bioengineering and Biotechnology,
2024
DOI:10.3389/fbioe.2024.1421706
|
|
|
[11]
|
Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review
Frontiers in Cellular and Infection Microbiology,
2024
DOI:10.3389/fcimb.2024.1419570
|
|
|
[12]
|
A long-lived photoluminescent silver nanocluster-infused silver terephthalate metal organic framework with antibacterial and biofilm inhibition activity: a high functional resource
Journal of Materials Chemistry C,
2023
DOI:10.1039/D3TC01033C
|
|
|
[13]
|
Structure-activity insights of harmine targeting DNA, ROS inducing cytotoxicity with PARP mediated apoptosis against cervical cancer, anti-biofilm formation and in vivo therapeutic study
Journal of Biomolecular Structure and Dynamics,
2022
DOI:10.1080/07391102.2021.1874533
|
|
|
[14]
|
Optimization of reduced graphene oxide production using central composite design from
Pennisetum glaucum
for biomedical applications
Biotechnology and Applied Biochemistry,
2022
DOI:10.1002/bab.2397
|
|
|
[15]
|
Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: an individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan
Folia Microbiologica,
2021
DOI:10.1007/s12223-020-00841-1
|
|
|
[16]
|
Biosurfactants: Greener Surface Active Agents for Sustainable Future
2021
DOI:10.1007/978-981-16-2705-7_4
|
|
|
[17]
|
Biosurfactants: Greener Surface Active Agents for Sustainable Future
2021
DOI:10.1007/978-981-16-2705-7_4
|
|
|
[18]
|
1,4-Naphthoquinone disintegrates the pre-existing biofilm of Staphylococcus aureus by accumulating reactive oxygen species
Archives of Microbiology,
2021
DOI:10.1007/s00203-021-02485-2
|
|
|
[19]
|
Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies
Brazilian Journal of Microbiology,
2021
DOI:10.1007/s42770-021-00624-x
|
|
|
[20]
|
Antibacterial, antivirulence and antifungal activity of silver nanoparticles synthesized using alkhal mother shae
Journal of Physics: Conference Series,
2021
DOI:10.1088/1742-6596/1879/2/022054
|
|
|
[21]
|
Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: an individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan
Folia Microbiologica,
2021
DOI:10.1007/s12223-020-00841-1
|
|
|
[22]
|
Defying hard-to-heal wounds with an early antibiofilm intervention strategy: wound hygiene
Journal of Wound Care,
2020
DOI:10.12968/jowc.2020.29.Sup3b.S1
|
|
|
[23]
|
Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections
Frontiers in Bioengineering and Biotechnology,
2020
DOI:10.3389/fbioe.2020.01039
|
|
|
[24]
|
Investigation of Synergism of Silver Nanoparticle and Erythromycin Inhibition and Detection of Exotoxin-A Gene in Pseudomonas aeruginosa Isolated from Burn Wounds Secretion
Iranian Journal of Medical Microbiology,
2020
DOI:10.30699/ijmm.14.4.379
|
|
|
[25]
|
1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat
Archives of Microbiology,
2020
DOI:10.1007/s00203-020-02117-1
|
|
|
[26]
|
Spiny amaranth leaf extract mediated iron oxide nanoparticles: Biocidal photocatalytic propensity, stability, dissolubility and reusability
Biocatalysis and Agricultural Biotechnology,
2019
DOI:10.1016/j.bcab.2019.101296
|
|
|
[27]
|
Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm
Archives of Microbiology,
2019
DOI:10.1007/s00203-019-01775-0
|
|
|
[28]
|
Biofilm reduction, cell proliferation, anthelmintic and cytotoxicity effect of green synthesised silver nanoparticle using Artemisia vulgaris extract
IET Nanobiotechnology,
2018
DOI:10.1049/iet-nbt.2017.0096
|
|
|
[29]
|
Biosynthesised AgCl NPs using Bacillus sp. 1/11 and evaluation of their cytotoxic activity and antibacterial and antibiofilm effects on multi-drug resistant bacteria
IET Nanobiotechnology,
2018
DOI:10.1049/iet-nbt.2017.0211
|
|
|
[30]
|
Biotechnological Applications of Quorum Sensing Inhibitors
2018
DOI:10.1007/978-981-10-9026-4_11
|
|
|
[31]
|
3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation
Folia Microbiologica,
2018
DOI:10.1007/s12223-018-0620-5
|
|
|
[32]
|
Iron oxide nano-material: physicochemical traits and in vitro antibacterial propensity against multidrug resistant bacteria
Journal of Industrial and Engineering Chemistry,
2017
DOI:10.1016/j.jiec.2016.09.014
|
|
|
[33]
|
Review on the current status of polymer degradation: a microbial approach
Bioresources and Bioprocessing,
2017
DOI:10.1186/s40643-017-0145-9
|
|
|
[34]
|
Antibiofilm activity and mode of action of DMSO alone and its combination with afatinib against Gram-negative pathogens
Folia Microbiologica,
2017
DOI:10.1007/s12223-017-0532-9
|
|
|
[35]
|
Biofilm Formation by Pseudomonas Species Onto Graphene Oxide–TiO2 Nanocomposite-Coated Catheters: In vitro Analysis
International Journal of Nanoscience,
2017
DOI:10.1142/S0219581X17600146
|
|
|
[36]
|
Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell
International Journal of Hydrogen Energy,
2017
DOI:10.1016/j.ijhydene.2017.07.084
|
|
|
[37]
|
Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell
International Journal of Hydrogen Energy,
2017
DOI:10.1016/j.ijhydene.2017.07.084
|
|
|
[38]
|
In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials
Accounts of Chemical Research,
2016
DOI:10.1021/acs.accounts.6b00201
|
|
|
[39]
|
In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials
Accounts of Chemical Research,
2016
DOI:10.1021/acs.accounts.6b00201
|
|
|