An Experimental Investigation into the Amalgamated Al2O3-40% TiO2 Atmospheric Plasma Spray Coating Process on EN24 Substrate and Parameter Optimization Using TLBO

HTML  XML Download Download as PDF (Size: 2123KB)  PP. 51-65  
DOI: 10.4236/msce.2016.46007    1,885 Downloads   2,771 Views  Citations

ABSTRACT

Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al2O3-40% TiO2 coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al2O3-40% TiO2 spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.

Share and Cite:

Rajesh, T. and Rao, R. (2016) An Experimental Investigation into the Amalgamated Al2O3-40% TiO2 Atmospheric Plasma Spray Coating Process on EN24 Substrate and Parameter Optimization Using TLBO. Journal of Materials Science and Chemical Engineering, 4, 51-65. doi: 10.4236/msce.2016.46007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.