Experimental Study of Jet Nanofluids Impingement System for Cooling Computer Processing Unit
Paisarn Naphon, Somchai Wongwises
.
DOI: 10.4236/jectc.2011.13005   PDF    HTML     5,055 Downloads   12,158 Views   Citations

Abstract

An experimental investigation of the jet nanofluids impingement heat transfer characteristics of mini-channel heat sink for cooling computer processing unit of personal computer is performed. The experiments are tested under the real personal computer operating conditions: no load and full load conditions. The experiments are performed for the following ranges of the parameters: coolant flow rate varies from 0.008 to 0.020 kg/s, the nozzle diameter is set to 1.00, 1.40, 1.80 mm, the distance nozzle-to-fins tip is 2.00 mm, the channel width of the mini-channel heat sink is 1.00 mm. The nanofluids with suspending of TiO2 particles in base fluid are used as a working fluids. It was observed that the average CPU temperatures obtained from the jet nanofluids impingement cooling system are 3.0%, 6.25% lower than those from the jet liquid impingement and from the conventional liquid cooling systems, respectively. However, this cooling system requires higher energy consumption.

Share and Cite:

Naphon, P. and Wongwises, S. (2011) Experimental Study of Jet Nanofluids Impingement System for Cooling Computer Processing Unit. Journal of Electronics Cooling and Thermal Control, 1, 38-44. doi: 10.4236/jectc.2011.13005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Y. Zhang, D. Pingala, T. N. Wong, K. C. Toh and Y. K. Joshi, “Single-Phase Liquid Cooled Micro Channel Heat Sink for Electronic Packages,” Applied Thermal Engineering, Vol. 25, No. 2, 2005, pp. 1472-1487. doi:10.1016/j.applthermaleng.2004.09.014
[2] X. Yu, “Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons with a Plate Fin Heat Sink,” Applied Thermal Engineering, Vol. 25, No.1, 2005, pp. 173-182. doi:10.1016/j.applthermaleng.2004.06.016
[3] Y. Peles, A. Kosor, C. Mishra, C. J. Kuo and B. Schneider, “Forced Convective Heat Transfer across a Pin Fin Micro Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 48, No. 2, 2005, pp. 3615-3627. doi:10.1016/j.ijheatmasstransfer.2005.03.017
[4] A. Kosar and Y. Peles, “Convective Flow of Refrigerant (R123) across a Bank of Micro Pin,” International Jour- nal of Heat and Mass Transfer, Vol. 50, No. 1, 2007, pp. 1018-1034.
[5] K. Yukut, “Experimental Investigation of Thermal Resistance of a Heat Sink with Hexagonal Fins,” Applied Thermal Engineering, Vol. 26, No. 2, 2006, pp. 2262- 2271. doi:10.1016/j.applthermaleng.2006.03.008
[6] M. M. Mohamed, “Air Cooling Characteristics of a Uniform Square Modules Array for Electronic Device Heat Sink,” Applied Thermal Engineering, Vol. 26, No. 2, 2006, pp. 486-493. doi:10.1016/j.applthermaleng.2005.07.013
[7] I. M. Didarul, “Study on Heat Transfer and Fluid Flow Characteristics with Short Rectangular Plate Fin of Different Pattern,” Experimental Thermal and Fluid Science, Vol. 31, No. 1, 2007, pp. 367-379. doi:10.1016/j.expthermflusci.2006.05.009
[8] R. Chein and J. Chuang, “Experimental Microchannel Heat Sink Performance Studies Using Nanofluids,” International Journal of Thermal Sciences, Vol. 46, No. 1, 2007, pp. 57-66. doi:10.1016/j.ijthermalsci.2006.03.009
[9] T. M. Jeng and S. C. Tzeng, “Pressure Drop and Heat Transfer of Square Pin-Fin Arrays in In-Line and Staggered Arrangements,” International Journal of Heat and Mass Transfer, Vol. 50, No. 1, 2007, pp. 2364-2375. doi:10.1016/j.ijheatmasstransfer.2006.10.028
[10] W. Duangtongsuk and S. Wongwises, “A Critical Review of Convective Heat Transfer of Nanofluids,” Renewable and Sustainable Energy Review, Vol. 11, No. 1, 2007, pp. 797-817. doi:10.1016/j.rser.2005.06.005
[11] V. Trisaksri and S, Wonwises, “Critical Review of Heat Transfer Characteristics of Nanofluids Review,” Renew- able and Sustainable Energy Reviews, Vol. 11, No. 2, 2007, pp. 512-523. doi:10.1016/j.rser.2005.01.010
[12] L. Godson, B. Raja, D. M. Lal and S. Wongwises, “Enhancement of Heat Transfer Using Nanofluids—An Overview,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 1, 2010, pp. 629-641. doi:10.1016/j.rser.2009.10.004
[13] C. J. Kobus and T. Oshio, “Development of a Theoretical Model for Predicting the Thermal Performance Characteristics of a Vertical Pin-Fin Array Heat Sink under Combined Forced and Natural Convection with Imping- ing Flow,” International Journal of Heat and Mass Transfer, Vol. 48, No. 3, 2005, pp. 1053-1063. doi:10.1016/j.ijheatmasstransfer.2004.09.042
[14] H. Y. Li, S. M. Chao and G. L. Tsai, “Thermal Performance Measurement of Heat Sinks with Confined Impinging Jet by Infrared Thermography,” International Journal of Heat and Mass Transfer, Vol. 48, Vol. 1, 2005, pp. 5386-5394.
[15] S. Geedipalli, A. K. Datta and V. Rakesh, “Heat Transfer in a Combination Microwave-Jet Impingement Oven,” Food and Bioproducts Processing, Vol. 86, No. 1, 2008, pp. 53-63. doi:10.1016/j.fbp.2007.10.016
[16] M. K. Sung and I. Mudawar, “Single-Phase and Two- Phase Heat Transfer Characteristics of Low Temperature Hybrid Micro-Channel/Micro-Jet Impingement Cooling Module,” International Journal of Heat and Mass Trans- fer, Vol. 51, No. 2, 2008, pp. 3882-3895. doi:10.1016/j.ijheatmasstransfer.2007.12.016
[17] M. K. Sung and I. Mudawar, “Single-Phase Hybrid Micro-Channel/Micro-Jet Impingement Cooling,” International Journal of Heat and Mass Transfer, Vol. 51, No. 1, 2008, pp. 4342-4352. doi:10.1016/j.ijheatmasstransfer.2008.02.023
[18] M. F. Koseoglu and S. Baskaya, “The Effect of Flow Field and Turbulence on Heat Transfer Characteristics of Confined Circular and Elliptic Impinging Jets,” Interna- tional Journal of Thermal Sciences, Vol. 47, No. 2, 2008, pp. 1332-1346. doi:10.1016/j.ijthermalsci.2007.10.015
[19] V. Katti and S. V. Prabhu, “Heat Transfer Enhancement on a Flat Surface with Axisymmetric Detached Ribs by Normal Impingement of Circular Air Jet,” International Journal of Heat and Fluid Flow, Vol. 29, No. 1, 2008, pp. 1279-1294. doi:10.1016/j.ijheatfluidflow.2008.05.003
[20] P. R. Kanna and M. K. Das, “Heat Transfer Study of Two-Dimensional Laminar Incompressible Offset Jet Flows,” International Journal of Thermal Sciences, Vol. 47, No. 1, 2008, pp. 1620-1629. doi:10.1016/j.ijthermalsci.2008.01.003
[21] F. Cirillo and G. M. Isopi, “Glass Tempering Heat Trans- fer Coefficient Evaluation and Air Jets Parameter Opti- mization,” Applied Thermal Engineering, Vol. 29, No. 2, 2009, pp. 1173-1179. doi:10.1016/j.applthermaleng.2008.06.005
[22] M. Goodro, J. Park, P. Ligrani, M. Fox and H. K. Moon, “Effects of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer,” International Journal of Heat and Mass Transfer, Vol. 51, No. 1, 2008, pp. 6243- 6253. doi:10.1016/j.ijheatmasstransfer.2008.05.004
[23] T. M. Jeng, S. C. Tzeng and H. R. Liao, “Flow Visualizations and Heat Transfer Measurements for a Rotating Pin-Fin Heat Sink with a Circular Impinging Jet,” Inter- national Journal of Heat and Mass Transfer, Vol. 52, No. 2, 2009, pp. 2119-2131. doi:10.1016/j.ijheatmasstransfer.2008.10.028
[24] B. N. Hewakandamby, “A Numerical Study of Heat Transfer Performance of Oscillatory Impinging Jets,” In- ternational Journal of Heat and Mass Transfer, Vol. 52, No. 2, 2009, pp. 396-406.
[25] C. T. Nguyen, N. Galanis, G. Polidori, S. Fohanno, C. V. Popa and A. L. Bechec, “An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3-Water Nanofluids,” International Journal of Thermal Sciences, Vol. 48, No. 3, 2009, pp. 401-411. doi:10.1016/j.ijthermalsci.2008.10.007
[26] M. F. Koseoglu and S. Baskaya, “Experimental and Nu- merical Investigation of Natural Convection Effects on Confined Impinging Jet Heat Transfer,” International Journal of Heat and Mass Transfer, Vol. 52, No. 1, 2009, pp. 1326-1336. doi:10.1016/j.ijheatmasstransfer.2008.07.051
[27] S. W. Chang, T. L. Yang and D. W. Shih, “Jet-Array Impingement Heat Transfer in a Concentric Annular Channel with Rotating Inner Cylinder,” International Journal of Heat and Mass Transfer, Vol. 52, No. 1, 2009, pp. 1254-1267. doi:10.1016/j.ijheatmasstransfer.2008.08.023
[28] M. A. R. Sharif and A. Banerjee, “Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate,” Applied Thermal Engineering, Vol. 29, No. 1, 2009, pp. 532-540. doi:10.1016/j.applthermaleng.2008.03.011
[29] B. P. Whelan and A. J. Robinson, “Nozzle Geometry Effects in Liquid Jet Array Impingement,” Applied Thermal Engineering, Vol. 29, No. 1, 2009, pp. 2211- 2221. doi:10.1016/j.applthermaleng.2008.11.003
[30] W. Yu and S. U. S. Choi, “The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxvell Model,” Journal of Nanoparticle Research, Vol. 5, No. 1, 2003, pp. 167-171. doi:10.1023/A:1024438603801
[31] B. C. Pak and Y. I. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,” Experimental Heat Transfer, Vol. 11, No. 2, 1998, pp. 151-170. doi:10.1080/08916159808946559
[32] Y. Xuan and W. Roetzel, “Conceptions of Heat Transfer Correlation of Nanofluids,” International Journal of Heat and Mass Transfer, Vol. 43, No. 19, 2000, pp. 3701- 3707. doi:10.1016/S0017-9310(99)00369-5
[33] H. W. Coleman and W. G. Steele, “Experimental and Uncertainty Analysis for Engineers,” John Wiley & Sons, New York, 1989.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.