TITLE:
Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem—Part III. An Original Solution of Hilbert’s Fourth Problem
AUTHORS:
Alexey Stakhov, Samuil Aranson
KEYWORDS:
Euclid’s Fifth Postulate, Lobachevski’s Geometry, Hyperbolic Geometry, Phyllotaxis, Bodnar’s Geometry, Hilbert’s Fourth Problem, the “Golden” and “Metallic” Means, Binet Formulas, Hyperbolic Fibonacci and Lucas Functions, Gazale Formulas, “Golden” Fibonacci -Goniometry
JOURNAL NAME:
Applied Mathematics,
Vol.2 No.3,
March
24,
2011
ABSTRACT: This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.