TITLE:
The 0.7-Anomaly in Quantum Point Contact; Many-Body or Single-Electron Effect?
AUTHORS:
Tadeusz Figielski
KEYWORDS:
Ballistic Transport, Quantum Point Contact, 0.7 Anomaly, Quantum Superposition and Interference
JOURNAL NAME:
World Journal of Condensed Matter Physics,
Vol.6 No.3,
August
12,
2016
ABSTRACT: Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based quantum point contacts (QPCs). Despite a tremendous amount of research on this anomalous feature, its origin remains still unclear. Here, a unique model of this anomaly is proposed relying on fundamental principles of quantum mechanics. It is noticed that just after opening a quasi-1D conducting channel in the QPC a single electron travels the channel at a time, and such electron can be—in principle—observed. The act of observation destroys superposition of spin states, in which the electron otherwise exists, and this suppresses their quantum interference. It is shown that then the QPC-conductance is reduced by a factor of 0.74. “Visibility” of electron is enhanced if the electron spends some time in the channel due to resonant transmission. Electron’s resonance can also explain an unusual temperature behavior of the anomaly as well as its recently discovered feature: oscillatory modulation as a function of the channel length and electrostatic potential. A recipe for experimental verification of the model is given.