TITLE:
Estimating Equations for Estimation of Mcdonald Generalized Beta— Binomial Parameters
AUTHORS:
Nthiwa M. Janiffer, Ali Islam, Orawo Luke
KEYWORDS:
Maximum Likelihood, McDonald Generalized Beta Binomial, Simulation, Quadratic Estimating Equations, Quasi-Likelihood
JOURNAL NAME:
Open Journal of Statistics,
Vol.4 No.9,
October
15,
2014
ABSTRACT: There has been a considerable recent attention in modeling over dispersed binomial data occurring in toxicology, biology, clinical medicine, epidemiology and other similar fields using a class of Binomial mixture distribution such as Beta Binomial distribution (BB) and Kumaraswamy-Binomial distribution (KB). A new three-parameter binomial mixture distribution namely, McDonald Generalized Beta Binomial (McGBB) distribution has been developed which is superior to KB and BB since studies have shown that it gives a better fit than the KB and BB distribution on both real life data set and on the extended simulation study in handling over dispersed binomial data. The dispersion parameter will be treated as nuisance in the analysis of proportions since our interest is in the parameters of McGBB distribution. In this paper, we consider estimation of parameters of this MCGBB model using Quasi-likelihood (QL) and Quadratic estimating functions (QEEs) with dispersion. By varying the coefficients of the QEE’s we obtain four sets of estimating equations which in turn yield four sets of estimates. We compare small sample relative efficiencies of the estimates based on QEEs and quasi-likelihood with the maximum likelihood estimates. The comparison is performed using real life data sets arising from alcohol consumption practices and simulated data. These comparisons show that estimates based on optimal QEEs and QL are highly efficient and are the best among all estimates investigated.