Article citationsMore>>
Li, J., Wan, W., Zhou, H., Li, J. and Xu, D. (2011) Hydrothermal Synthesis of TiO2(B) Nanowires with Ultrahigh Sur- face Area and Their Fast Charging and Discharging Properties in Li-Ion Batteries. Chemical Communications, 47, 3439-3441. http://dx.doi.org/10.1039/c0cc04634e
has been cited by the following article:
-
TITLE:
Studies on TiO2/Reduced Graphene Oxide Composites as Cathode Materials for Magnesium-Ion Battery
AUTHORS:
E. Sheha
KEYWORDS:
Graphene, Magnesium Battery, Titanium Dioxide, Cathode
JOURNAL NAME:
Graphene,
Vol.3 No.3,
July
24,
2014
ABSTRACT:
The aim of this work is to introduce a high performance cathode for magnesium-ion batteries. TiO2/reduced graphene oxide (rGO) composites were mixed in ball mill. The samples are charac- terized using XRD and SEM. The spex-milled composites exhibit better electrochemical perfor- mance with higher reversible capacity and excellent cyclability. The excellent electrochemical performance of TiO2/rGO composites is due to their unique structures, which intimately combine the conductive graphene nanosheets network with TiO2 nanoparticles and possess the characteristic parallel channels running along the [010] orientation, which allow easy Mg2+ transport. It was found that layered TiO2 and rGO nanosheets in the composite interlace with each other to form novel sandwich-structured microspheres, which exhibit preferable electrochemical performance in rechargeable Mg batteries.