TITLE:
Effects of Differences in Manipulation and Supporting Legs and Moving Target Speed on a Visual Tracking Test Using Center of Pressure
AUTHORS:
Haruka Kawabata, Shinichi Demura, Masanobu Uchiyama
KEYWORDS:
Coordination; Dynamic Balance; Agility; Limb Laterality
JOURNAL NAME:
Advances in Physical Education,
Vol.3 No.4,
November
25,
2013
ABSTRACT: The human limbs are paired organs, each capable of independent movement. Functional laterality is found in the upper limbs when writing letters or throwing a ball, etc. This study aimed to examine the effects of differences in manipulation leg (ML), defined as the leg used when kicking a ball and supporting leg (SL), as the contralateral leg, and moving target speed on a visual tracking test using center of pressure (COP). We included 20 healthy male students (age, 22.0 ± 4.9 years; height, 172.4 ± 3.2 cm, and weight, 66.2 ± 5.0 kg) without lower limb or eye disorders. During the tracking test, subjects pursued a target moving on the Y-axis by COP. We selected 0.083 and 0.050 Hz frequencies to examine the effect of different target speeds. An evaluation variable was defined as total errors between moving targets and COP over 30 s. It was assumed that individuals with smaller errors would be superior during tracking tests. A significant difference was found between means for bilateral and unilateral stance (ML or SL) at both frequencies but not between ML and SL, and in all standing conditions, 0.083 Hz showed a smaller error than 0.050 Hz. In conclusion, regardless of the speed of the moving target, performance of the visual tracking test was superior in bilateral than unilateral stance, and there was no difference between ML and SL. Regardless of stance, test performance reduced with faster target speed, particularly with unilateral stance (about 29%).