Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
N. Hamzah, F. H. Anuwar and Z. Zakaria, “Classification of Transient in Power System Using Support Vector Machine,” 5th international colloquium on signal processing & its applications, Kuala Lumpur Malaysia:IEEE,2009, pp. 418-422.
has been cited by the following article:
TITLE: Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms
AUTHORS: Xiao Fei
KEYWORDS: Power Quality; Disturbance Classification; Wavelet Transform; SVM Multi-Class Algorithms
JOURNAL NAME: Energy and Power Engineering, Vol.5 No.4B, October 30, 2013
ABSTRACT: The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.
Related Articles:
Signal Classification Method Based on Support Vector Machine and High-Order Cumulants
Xin ZHOU, Ying WU, Bin YANG
DOI: 10.4236/wsn.2010.21007 7,652 Downloads 13,638 Views Citations
Pub. Date: January 13, 2010
Text Classification Using Support Vector Machine with Mixture of Kernel
Liwei Wei, Bo Wei, Bin Wang
DOI: 10.4236/jsea.2012.512B012 4,906 Downloads 7,090 Views Citations
Pub. Date: January 18, 2013
Application of Slantlet Transform Based Support Vector Machine for Power Quality Detection and Classification
Faridah Hanim M. Noh, Hajime Miyauchi, M. Faizal Yaakub
DOI: 10.4236/jpee.2015.34030 4,288 Downloads 4,691 Views Citations
Pub. Date: April 14, 2015
Handwriting Classification Based on Support Vector Machine with Cross Validation
Anith Adibah Hasseim, Rubita Sudirman, Puspa Inayat Khalid
DOI: 10.4236/eng.2013.55B017 3,103 Downloads 4,576 Views Citations
Pub. Date: July 29, 2013
Support Vector Machine-Based Fault Diagnosis of Power Transformer Using k Nearest-Neighbor Imputed DGA Dataset
Zahriah Binti Sahri, Rubiyah Binti Yusof
DOI: 10.4236/jcc.2014.29004 3,662 Downloads 4,973 Views Citations
Pub. Date: July 11, 2014