Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
P. Janik and T. Lobos, “Automated Classification of Power-quality Disturbances Using SVM and RBF Networks,” IEEE Transaction on Power Delivery, Vol. 21, No. 3, 2006, pp. 1663-1669.doi:10.1109/TPWRD.2006.874114
has been cited by the following article:
TITLE: Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms
AUTHORS: Xiao Fei
KEYWORDS: Power Quality; Disturbance Classification; Wavelet Transform; SVM Multi-Class Algorithms
JOURNAL NAME: Energy and Power Engineering, Vol.5 No.4B, October 30, 2013
ABSTRACT: The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.
Related Articles:
A Quick Classification Method of the Power Quality Disturbances
Yi Yi Tang, Hao Liu
DOI: 10.4236/eng.2014.67040 3,961 Downloads 5,398 Views Citations
Pub. Date: June 11, 2014
Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms
Xiao Fei
DOI: 10.4236/epe.2013.54B107 5,739 Downloads 6,685 Views Citations
Pub. Date: October 30, 2013
Research on the Power System Fault Classification Based on HHT and SVM Using Wide-area Information
Yiran Guo, Changqing Li, Yali Li, Shibin Gao
DOI: 10.4236/epe.2013.54B026 3,866 Downloads 5,009 Views Citations
Pub. Date: October 14, 2013
Electric Power Quality Analysis 6-10/0.4 kV Distribution Networks
Kholiddinov Ilkombek Khosiljonovich
DOI: 10.4236/epe.2016.86025 2,082 Downloads 2,915 Views Citations
Pub. Date: June 30, 2016
Classification of Normal and Pathological Voice Using SVM and RBFNN
V. Sellam, J. Jagadeesan
DOI: 10.4236/jsip.2014.51001 4,842 Downloads 6,808 Views Citations
Pub. Date: February 10, 2014