Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


E. Flores and A. Herrero, “Nitrogen Assimilation and Nitrogen Control in Cyanobacteria,” Biochemical Society Transactions, Vol. 33, 2005, pp. 164-167.

has been cited by the following article:

  • TITLE: Substitution of Nitrite Reductase of Thermosynechococcus elongatus BP-1 by the Homologous Gene of Phormidium laminosum

    AUTHORS: Maite Buxens, Juan L. Serra, María J. Llama

    KEYWORDS: Thermophilic Cyanobacteria; Long Flanking Homology Polymerase Chain Reaction; Nitrite Reductase; Gene Transference

    JOURNAL NAME: Advances in Microbiology, Vol.3 No.6A, October 28, 2013

    ABSTRACT: Even though the nitrate assimilation operon has been extensively studied in Phormidium laminosum, some aspects still remain unclear. The genetic manipulation of this cyanobacterium is problematic that hinders the elucidation of further aspects of nitrogen metabolism. To circumvent this, Thermosynechococcus elongatus BP-1 was selected as a surrogate host and its nirA gene was substituted by the homologous gene of P. laminosum. This process, based on Long Flanking Homology Polymerase Chain Reaction and the natural competence of T. elongatus BP-1, required an intermediate T. elongatus BP-1 ΔnirA::kat mutant, which carries a gene encoding a thermostable kanamycin nucleotidyl transferase in place of nirA_Te. In the presence of nirA_Pl, nirA defective mutants of T. elongatus BP-1 recovered the ability to grow with nitrate as the sole nitrogen source, and showed a phenotype similar to that observed in wild-type cells. The procedure could be useful to substitute other genes from T. elongatus BP-1 with the homologues from P. laminosum in order to study this particular operon. Furthermore, it may be used as a general tool to explore phenotypic changes due to the exchange of a single gene between cyanobacteria.