SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


G. J. Whitrow, British Journal for the Philosophy of Science, Vol. 6. 1955, pp. 13-31.

has been cited by the following article:

  • TITLE: Einstein’s Pseudo-Tensor in n Spatial Dimensions for Static Systems with Spherical Symmetry

    AUTHORS: Frank R. Tangherlini

    KEYWORDS: Field Equations; Point Particle; Dimensionality of Space; Einstein’s Pseudo-Tensor

    JOURNAL NAME: Journal of Modern Physics, Vol.4 No.9, September 30, 2013

    ABSTRACT: It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into a linear form when the source energy density equals radial stress. These linear equations lead to a delta function energymomentum tensor for a point mass source for the Schwarzschild field that has vanishing self-stress, and whose integral therefore transforms properly under a Lorentz transformation, as though the particle is in the flat space-time of special relativity (SR). These findings were later extended to n spatial dimensions. Consistent with this SR-like result for the source tensor, Nordstrom and independently, Schrodinger, found for three spatial dimensions that the Einstein gravitational energy-momentum pseudo-tensor vanished in proper quasi-rectangular coordinates. The present work shows that this vanishing holds for the pseudo-tensor when extended to n spatial dimensions. Two additional consequences of this work are: 1) the dependency of the Einstein gravitational coupling constant κ on spatial dimensionality employed earlier is further justified; 2) the Tolman expression for the mass of a static, isolated system is generalized to take into account the dimensionality of space for n ≥ 3.