Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
D. Kleitman and L. Pachter, “Finding Convex Sets among Points in the Plane,” Discrete & Computational Geometry, Vol. 19, No. 3, 1998, pp. 405-410. doi:10.1007/PL00009358
has been cited by the following article:
TITLE: On Some Numbers Related to the Erdös-Szekeres Theorem
AUTHORS: Mark J. Nielsen, William Webb
KEYWORDS: Erdos-Szekeres Theorem; Combinatorial Geometry
JOURNAL NAME: Open Journal of Discrete Mathematics, Vol.3 No.3, July 12, 2013
ABSTRACT: A crossing family of segments is a collection of segments each pair of which crosses. Given positive integers j and k,a(j,k) grid is the union of two pairwise-disjoint collections of segments (with j and k members, respectively) such that each segment in the first collection crosses all members of the other. Let c(k) be the least integer such that any planar set of c(k) points in general position generates a crossing family of k segments. Also let #(j,k) be the least integer such that any planar set of #(j,k) points in general position generates a (j,k)-grid. We establish here the facts 9≤c(3)≤16 and #(1,2)=8.
Related Articles:
On Irrational Points in the Plane
Thomas Beatty, Timothy Jones
DOI: 10.4236/apm.2017.74016 6,691 Downloads 7,145 Views Citations
Pub. Date: April 20, 2017
Algebra and Geometry of Sets in Boolean Space
Vladimir Leontiev, Garib Movsisyan, Zhirayr Margaryan
DOI: 10.4236/ojdm.2016.62004 1,732 Downloads 2,292 Views Citations
Pub. Date: March 31, 2016
Optimal Separation of Twin Convex Sets under Externalities
Indrajit Mallick
DOI: 10.4236/apm.2014.48049 2,185 Downloads 2,604 Views Citations
Pub. Date: August 22, 2014
Fault-Plane Solution of the Earthquake of 19 March 2005 in Monatele (Cameroon)
Eric N. Ndikum, Charles T. Tabod, Alain-Pierre K. Tokam, Bernard Z. Essimbi
DOI: 10.4236/ojg.2014.46021 3,325 Downloads 4,179 Views Citations
Pub. Date: June 23, 2014
Locating Multiple Facilities in Convex Sets with Fuzzy Data and Block Norms
Jafar Fathali, Ali Jamalian
DOI: 10.4236/am.2012.312267 3,600 Downloads 5,250 Views Citations
Pub. Date: December 21, 2012