Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Yu. L. Menshikov and A. G. Nakonechnij, “Principle of Maximum Stability in Inverse Problems under Minimum a Priori Initial Information,” Proceedings of International Conference PDMU-2003, Kiev-Alushta, 8-12 September 2003, pp. 80-82.
has been cited by the following article:
TITLE: Inverse Problems for Dynamic Systems: Classification and Solution Methods
AUTHORS: Menshikov Yu
KEYWORDS: Inverse Problems; Dynamic Systems; Classification; Regularization; Estimation
JOURNAL NAME: Advances in Pure Mathematics, Vol.3 No.4, July 1, 2013
ABSTRACT: The inverse problems for motions of dynamic systems of which are described by system of the ordinary differential equations are examined. The classification of such type of inverse problems is given. It was shown that inverse problems can be divided into two types: synthesis inverse problems and inverse problems of measurement (recognition). Each type of inverse problems requires separate approach to statements and solution methods. The regularization method for obtaining of stable solution of inverse problems was suggested. In some cases, instead of recognition of inverse problems solution, the estimation of solution can be used. Within the framework of this approach, two practical inverse problems of measurement are considered.
Related Articles:
Stability and Regularization Method for Inverse Initial Value Problem of Biparabolic Equation
Hongwu Zhang, Xiaoju Zhang
DOI: 10.4236/oalib.1101542 1,176 Downloads 1,620 Views Citations
Pub. Date: May 14, 2015
Urgent Proceedings before the International Courts and Tribunals
Tafsir Malick Ndiaye
DOI: 10.4236/blr.2019.104046 256 Downloads 473 Views Citations
Pub. Date: September 2, 2019
A Maximum Principle for Smooth Infinite Horizon Optimal Control Problems with State Constraints and with Terminal Constraints at Infinity
Atle Seierstad
DOI: 10.4236/ojop.2015.43012 2,837 Downloads 3,523 Views Citations
Pub. Date: September 29, 2015
Subjectivity in Application of the Principle of Maximum Entropy
Jan Peter Hessling
DOI: 10.4236/ojs.2013.36A001 2,643 Downloads 4,252 Views Citations
Pub. Date: December 27, 2013
Study on the Stability of World Diversity of Cultured Species G. hirsutum L. to Salination
Alisher B. Amanturdiev, Marguba M. Rejapova, Ilkham Dj. Kurbanbaev, Abdulaxat A. Azimov, Hilola X. Matniyazova
DOI: 10.4236/ajps.2020.119097 78 Downloads 178 Views Citations
Pub. Date: September 15, 2020