Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
A. V. Goncharskij, A. C. Leonov and A. G. Yagola, “About One Regularized Algorithm for Ill-Posed Problems with Approximate Given Operator,” Journal of Computational Mathematics and Mathematical Physics, Vol. 12, No. 6, 1972, pp. 1592-1594.
has been cited by the following article:
TITLE: Inverse Problems for Dynamic Systems: Classification and Solution Methods
AUTHORS: Menshikov Yu
KEYWORDS: Inverse Problems; Dynamic Systems; Classification; Regularization; Estimation
JOURNAL NAME: Advances in Pure Mathematics, Vol.3 No.4, July 1, 2013
ABSTRACT: The inverse problems for motions of dynamic systems of which are described by system of the ordinary differential equations are examined. The classification of such type of inverse problems is given. It was shown that inverse problems can be divided into two types: synthesis inverse problems and inverse problems of measurement (recognition). Each type of inverse problems requires separate approach to statements and solution methods. The regularization method for obtaining of stable solution of inverse problems was suggested. In some cases, instead of recognition of inverse problems solution, the estimation of solution can be used. Within the framework of this approach, two practical inverse problems of measurement are considered.
Related Articles:
A New Regularized Solution to Ill-Posed Problem in Coordinate Transformation
Xuming Ge, Jicang Wu
DOI: 10.4236/ijg.2012.31002 5,496 Downloads 9,309 Views Citations
Pub. Date: February 28, 2012
A Modified Augemented Lagrangian Method for a Class of Nonlinear Ill-Posed Problems
Mhbm Shariff
DOI: 10.4236/ojapps.2013.31B1014 4,074 Downloads 4,872 Views Citations
Pub. Date: July 11, 2013
Erratum to “Simple Method for Evaluating Singular Integrals” [American Journal of Computational Mathematics, Volume 7, Number 4, December 2017 PP. 444-450]
Nhan T. Tran
DOI: 10.4236/ajcm.2019.93015 371 Downloads 650 Views Citations
Pub. Date: September 27, 2019
Mathematical Physics in Diffusion Problems
Takahisa Okino
DOI: 10.4236/jmp.2015.614217 3,354 Downloads 4,235 Views Citations
Pub. Date: November 27, 2015
Erratum to “Manifolds with Bakry-Emery Ricci Curvature Bounded Below”, Advances in Pure Mathematics, Vol. 6 (2016), 754-764
Issa Allassane Kaboye, Bazanfaré Mahaman
DOI: 10.4236/apm.2017.711039 785 Downloads 1,232 Views Citations
Pub. Date: November 24, 2017