Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
D. T. Zhu, “Nonmonotone Backtracking Inexact Quasi-Newton Algorithms for Solving Smooth Nonlinear Equations,” Applied Mathematics and Computation, Vol. 161, No. 3, 2005, pp. 875-895. doi:10.1016/j.amc.2003.12.074
has been cited by the following article:
TITLE: A Gauss-Newton-Based Broyden’s Class Algorithm for Parameters of Regression Analysis
AUTHORS: Xiangrong Li, Xupei Zhao
KEYWORDS: Global Convergence, Broyden’s Class, Regression Analysis, Nonlinear Equations, Gauss-Newton
JOURNAL NAME: Applied Mathematics, Vol.2 No.1, January 30, 2011
ABSTRACT: In this paper, a Gauss-Newton-based Broyden’s class method for parameters of regression problems is presented. The global convergence of this given method will be established under suitable conditions. Numerical results show that the proposed method is interesting.
Related Articles:
LP-SVR Model Selection Using an Inexact Globalized Quasi-Newton Strategy
Pablo Rivas-Perea, Juan Cota-Ruiz, J. A. Perez Venzor, David Garcia Chaparro, Jose-Gerardo Rosiles
DOI: 10.4236/jilsa.2013.51003 5,060 Downloads 6,899 Views Citations
Pub. Date: February 22, 2013
A Nonmonotone Line Search Method for Symmetric Nonlinear Equations
Gonglin Yuan, Laisheng Yu
DOI: 10.4236/ica.2010.11004 4,561 Downloads 6,578 Views Citations
Pub. Date: August 27, 2010
A nonmonotone adaptive trust-region algorithm for symmetric nonlinear equations
Gong-Lin Yuan, Cui-Ling Chen, Zeng-Xin Wei
DOI: 10.4236/ns.2010.24045 5,116 Downloads 9,454 Views Citations
Pub. Date: May 7, 2010
On the Computation of Extinction Time for Some Nonlinear Parabolic Equations
Kossadoum Ngarmadji, Siniki Ndeuzoumbet, Hilaire Nkounkou, Benjamin Mampassi
DOI: 10.4236/am.2015.65071 2,437 Downloads 2,867 Views Citations
Pub. Date: May 7, 2015
An Innovative Genetic Algorithms-Based Inexact Non-Linear Programming Problem Solving Method
Weihua Jin, Zhiying Hu, Christine Chan
DOI: 10.4236/jep.2017.83018 1,173 Downloads 1,908 Views Citations
Pub. Date: March 14, 2017