Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

SAS Institute, “SAS Online Documentation,” Version 9.1.3, SAS Institute, Cary, 2002.

has been cited by the following article:

  • TITLE: Recovery of Essential Plant Nutrients from Biofuel Residual

    AUTHORS: S. Agyin- Birikorang, G. A. O’ Connor, P. C. Pullammanappallil, G. R. Mohan

    KEYWORDS: Bioenergy Biomass; Dry Matter Yield; Leaching N and P Losses; Processed Biofuel Residual (PBR); Sweet Sorghum

    JOURNAL NAME: Journal of Sustainable Bioenergy Systems, Vol.3 No.2, June 26, 2013

    ABSTRACT: Essential plant nutrients contained in residues and wastes generated during biofuel processing can be recovered for further production of bioenergy biomass. The objective of this study was to determine the relative agronomic efficiency of “processed” biofuel residual (PBR). Liquid biofuel residual was “processed” by precipitating phosphate and ammonium in the residual with magnesium into a struvite-like material. Then, in a series of greenhouse experiments, we evaluated the fertility potential of PBR, using sweet sorghum (Sorghum bicolor (L.) Moench), as a test bioenergy crop. We compared the agronomic effectiveness of PBR to inorganic commercial fertilizers, biosolids, and poultry manure as nutrient sources. The sources were either applied alone or in combination with supplemental essential plant nutrients (S, K, Mg, and micronutrients). In each of the greenhouse experiments, the crop was grown for 12 wk on soil of minimal native fertility. After each harvest, sufficient water was applied to the soil in each pot over a 6-wk period to yield ~2 L (~one pore volume) of leachate to assess potential total N and soluble reactive phosphorus (SRP) losses. Dry matter yields from the PBR treatment applied alone were significantly greater than yields from inorganic fertilizers, biosolids, and poultry manure treatments applied alone, and similar to yields obtained when the supplemental essential plant nutrients were added to the inorganic fertilizer, biosolids, and manure treatments. Leachate N and SRP concentrations from the PBR treatment were significantly lower than in the treatments with inorganic fertilizers, poultry manure, and biosolids. We conclude that PBR can substitute for inorganic fertilizers and other organic sources of plant nutrients to produce bioenergy biomass cheaply, without causing offsite N and P losses in vulnerable soils.