SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


N. Q. Meinander, I. Boels and B. Hahn-Hagerdal, “Fermentation of Xylose/Glucose Mixtures by Metabolically Engineered Saccharomyces cerevisiae Strains Expressing XYL1 and XYL2 from Pichia stipitis with and without Overexpression of TAL1,” Bioresource Technology, Vol. 68, No. 1, 1999, pp. 79-87. doi:10.1016/S0960-8524(98)00085-6

has been cited by the following article:

  • TITLE: Fermentation of the Straw Material Paja Brava by the Yeast Pichia stipitis in a Simultaneous Saccharification and Fermentation Process

    AUTHORS: Cristhian Carrasco, Henrique Baudel, Christian Roslander, Mats Galbe, Gunnar Lidén

    KEYWORDS: Ethanol; Lignocellulose; Fermentation; Xylose

    JOURNAL NAME: Journal of Sustainable Bioenergy Systems, Vol.3 No.2, June 25, 2013

    ABSTRACT: Paja Brava is a native South American grass with a high carbohydrate content. In the current work, the potential of using this feedstock for ethanol production using a simultaneous saccharification and fermentation (SSF) process with the xylose-fermenting yeast Pichia stipitis (Scheffersomyces stipitis) CBS6054 was investigated. The straw material was subjected to SO2 catalyzed steam pretreatment at 200°C and 5 min residence time, which resulted in a solubilization of pentose sugars (mainly xylose) of 64% with only minor amounts of degradation products. The obtained material, including the pretreatment liquid, was subsequently hydrolyzed and fermented in an SSF process at microaerobic conditions using either a batch or a fed-batch process at a total water-insoluble solids loading of 10%. Overall yields of ethanol based on all available sugars of 0.24 g/g and 0.27 g/g were obtained for batch and fed-batch mode of operation, respectively. The higher yield in the fed-batch process coincided with a higher degree of conversion of the sugars in the liquid medium, in particular of arabinose, for which the conversion was doubled (from 48% to 97%).