SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


C. Carrasco, H. M. Baudel, M. Penarrieta, C. Solano, L. Tejeda, C. Roslander, M. Galbe and G. Lidén, “Steam Pretreatment and Fermentation of the Straw Material ‘Paja Brava’ Using Simultaneous Saccharification and Co-Fermentation,” Journal of Bioscience and Bioengineering, Vol. 111, No. 2, 2011, pp. 167-174. doi:10.1016/j.jbiosc.2010.10.009

has been cited by the following article:

  • TITLE: Fermentation of the Straw Material Paja Brava by the Yeast Pichia stipitis in a Simultaneous Saccharification and Fermentation Process

    AUTHORS: Cristhian Carrasco, Henrique Baudel, Christian Roslander, Mats Galbe, Gunnar Lidén

    KEYWORDS: Ethanol; Lignocellulose; Fermentation; Xylose

    JOURNAL NAME: Journal of Sustainable Bioenergy Systems, Vol.3 No.2, June 25, 2013

    ABSTRACT: Paja Brava is a native South American grass with a high carbohydrate content. In the current work, the potential of using this feedstock for ethanol production using a simultaneous saccharification and fermentation (SSF) process with the xylose-fermenting yeast Pichia stipitis (Scheffersomyces stipitis) CBS6054 was investigated. The straw material was subjected to SO2 catalyzed steam pretreatment at 200°C and 5 min residence time, which resulted in a solubilization of pentose sugars (mainly xylose) of 64% with only minor amounts of degradation products. The obtained material, including the pretreatment liquid, was subsequently hydrolyzed and fermented in an SSF process at microaerobic conditions using either a batch or a fed-batch process at a total water-insoluble solids loading of 10%. Overall yields of ethanol based on all available sugars of 0.24 g/g and 0.27 g/g were obtained for batch and fed-batch mode of operation, respectively. The higher yield in the fed-batch process coincided with a higher degree of conversion of the sugars in the liquid medium, in particular of arabinose, for which the conversion was doubled (from 48% to 97%).