Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
D. Tataru, Communications in Partial Differential Equations, Vol. 20, 1995, pp. 855-884. doi:10.1080/03605309508821117
has been cited by the following article:
TITLE: Localisation Inverse Problem and Dirichlet-to-Neumann Operator for Absorbing Laplacian Transport
AUTHORS: Ibrahim Baydoun
KEYWORDS: Absorbing Laplacian Transport; Dirichlet-to-Neumann Operators; Inverse Problem
JOURNAL NAME: Journal of Modern Physics, Vol.4 No.6, June 13, 2013
ABSTRACT: We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann operator . In this paper, we define explicitly operator , and we show that Green-Ostrogradski theorem is adopted to this type of problem in three dimensional case.
Related Articles:
Method of Lines for Third Order Partial Differential Equations
Mustafa Kudu, Ilhame Amirali
DOI: 10.4236/jamp.2014.22005 2,848 Downloads 5,841 Views Citations
Pub. Date: January 21, 2014
Similarity Reduction of Nonlinear Partial Differential Equations
Amnah S. Al-Johani
DOI: 10.4236/jamp.2014.23003 3,656 Downloads 6,048 Views Citations
Pub. Date: February 11, 2014
Parabolic Partial Differential Equations as Inverse Moments Problem
Maria B. Pintarelli
DOI: 10.4236/am.2016.71007 4,251 Downloads 4,908 Views Citations
Pub. Date: January 25, 2016
Optimality Conditions and Algorithms for Direct Optimizing the Partial Differential Equations
Victor K. Tolstykh
DOI: 10.4236/eng.2012.47051 4,419 Downloads 6,361 Views Citations
Pub. Date: July 3, 2012
On Approximate Solutions of Second-Order Linear Partial Differential Equations
Yousry S. Hanna
DOI: 10.4236/am.2012.39148 4,921 Downloads 7,538 Views Citations
Pub. Date: September 27, 2012