Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
M. E. Taylor, “Partial Differential Equations II: Qualitative Studies of Linear Equations,” Springer-Verlag, Berlin, 1996. doi:10.1007/978-1-4757-4187-2
has been cited by the following article:
TITLE: Localisation Inverse Problem and Dirichlet-to-Neumann Operator for Absorbing Laplacian Transport
AUTHORS: Ibrahim Baydoun
KEYWORDS: Absorbing Laplacian Transport; Dirichlet-to-Neumann Operators; Inverse Problem
JOURNAL NAME: Journal of Modern Physics, Vol.4 No.6, June 13, 2013
ABSTRACT: We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann operator . In this paper, we define explicitly operator , and we show that Green-Ostrogradski theorem is adopted to this type of problem in three dimensional case.
Related Articles:
Numerical Solution of Differential Equations by Direct Taylor Expansion
Pirooz Mohazzabi, Jennifer L. Becker
DOI: 10.4236/jamp.2017.53053 1,530 Downloads 3,225 Views Citations
Pub. Date: March 22, 2017
The Application of Linear Ordinary Differential Equations
Haoyang Cui
DOI: 10.4236/am.2020.1112088 134 Downloads 407 Views Citations
Pub. Date: December 21, 2020
Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem
Maria Beatriz Pintarelli
DOI: 10.4236/am.2015.66090 3,663 Downloads 4,086 Views Citations
Pub. Date: June 2, 2015
An Analysis of the Impact of Economic-Ecological Balance Mechanism Based on Non-Linear Partial Differential Equations on Land Financial Teaching Methods
Weiqing Wang, Lezhu Zhang, Weikun Zhang, Ling Tao, Hanyuan Liang
DOI: 10.4236/gep.2018.610002 323 Downloads 704 Views Citations
Pub. Date: October 18, 2018
Double Elzaki Transform Decomposition Method for Solving Non-Linear Partial Differential Equations
Moh A. Hassan, Tarig M. Elzaki
DOI: 10.4236/jamp.2020.88112 111 Downloads 304 Views Citations
Pub. Date: August 7, 2020