Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

A. C. Todd, et al., “The Application of Depth of Formation Damage Measurments in Predicted Water Injectivity Decline,” SPE Formation Damage Control Symposium, Bakersfield, 13-14 February 1984.

has been cited by the following article:

  • TITLE: Drilling Operation and Formation Damage

    AUTHORS: Hooman Fallah, Sara Sheydai

    KEYWORDS: Formation Damage; Drilling Mud; Classical Filtration; Maximum Retention Function External Filter Cake

    JOURNAL NAME: Open Journal of Fluid Dynamics, Vol.3 No.2, June 5, 2013

    ABSTRACT: Transport of particle suspensions in oil reservoirs is an essential phenomenon in many oil industry processes. Solid and liquid particles dispersed in the drilling fluid (mud) are trapped by the rock (porous medium) and permeability decline takes place during drilling fluid invasion into reservoir resulting in formation damage. The formation damage due to mud filtration is explained by erosion of external filter cake. Nevertheless, the stabilization is observed in core floods, which demonstrates internal erosion. A new mathematical model for detachment of particles is based on mechanical equilibrium of a particle positioned on the internal cake or matrix surface in the pore space. In the current work the analytical solution obtained to mud filtration with one particle capture mechanism with damage stabilization. The particle torque equilibrium is determined by the dimensionless ratio between the drag and normal forces acting on the particle. The maximum retention function of the dimensionless ratio closes system of governing equations for colloid transport through porous medium.