SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

H. Coe and M. Michalak, “Calcium Binding Chaperones of the Endoplasmic Reticulum,” General Physiology and Biophysics, Vol. 28 Spec No Focus, 2009, pp. 96- 103.

has been cited by the following article:

  • TITLE: Restraint-Induced Expression of Endoplasmic Reticulum Stress-Related Genes in the Mouse Brain

    AUTHORS: Mitsue Ishisaka, Takashi Kudo, Masamitsu Shimazawa, Kenichi Kakefuda, Atsushi Oyagi, Kana Hyakkoku, Kazuhiro Tsuruma, Hideaki Hara

    KEYWORDS: Corticosterone, Depression, Endoplasmic Reticulum Stress, Restraint Stress

    JOURNAL NAME: Pharmacology & Pharmacy, Vol.2 No.1, January 19, 2011

    ABSTRACT: Depression is a significant public health concern but its pathology remains unclear. Previously, increases in an endoplasmic reticulum (ER) stress-related protein were reported in the temporal cortex of subjects with major depressive disorder who had died by suicide. This finding suggests an association between depression and ER stress. The present study was designed to investigate whether acute stress could affect the ER stress response. Mice were immobilized for a period of 6 hr and then expression of ER stress response-related genes was measured by real-time PCR. We also used enzyme-linked immunosorbent assay for concomitant measurement of the plasma corticosterone levels in the mice. The effect of corticosterone on ER stress proteins was further investigated by treating mice with corticosterone for 2 weeks and then measuring ER protein expression by Western blotting. After a 6 hr restraint stress, mRNA levels of ER stress-related genes, such as the 78-kilodalton glucose regulated protein (GRP78), the 94-kilodalton glucose regulated protein (GRP94), and calreticulin, were increased in the cortex, hippocampus, and striatum of mouse brain. Blood plasma corticosterone level was also increased. In the corticosterone-treated mouse model, the expression of GRP78 and GRP94 was significantly increased in the hippocampus. These results suggest that acute stress may affect ER function and that ER stress may be involved in the pathogenesis of restraint stress, including the development of depression.