Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
M. Ohmiya and Y. P. Mishev, “Darboux Transformation and Λ-Operator,” Journal of Mathematics/Tokushima University, Vol. 27, 1993, pp. 1-15.
has been cited by the following article:
TITLE: Semi-Commutative Differential Operators Associated with the Dirac Opetator and Darboux Transformation
AUTHORS: Masatomo Matsushima, Mayumi Ohmiya
KEYWORDS: KdV Polynomials; mKdV (-) Polynomials; Schrödinger Operator; Dirac Operator
JOURNAL NAME: Advances in Pure Mathematics, Vol.3 No.1A, January 30, 2013
ABSTRACT: In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms of the KdV polynomials. These formulas give a new interpretation of the classical Darboux transformation and the Miura transformation. Moreover, the recursion operator associated with the hierarchy of the mKdV (-) polynomials is constructed by the algebraic method.
Related Articles:
Darboux Transformation in Quantum Black-Scholes Hamiltonian and Supersymmetry
Jafar Sadeghi, Mohammad Rostami, Ahmad Pourdarvish, Behnam Pourhassan
DOI: 10.4236/ojm.2013.32008 3,238 Downloads 5,925 Views Citations
Pub. Date: May 24, 2013
N-Fold Darboux Transformation for a Nonlinear Evolution Equation
Yannan Zhao
DOI: 10.4236/am.2012.38141 6,241 Downloads 8,479 Views Citations
Pub. Date: August 2, 2012
Semi-Commutative Differential Operators Associated with the Dirac Opetator and Darboux Transformation
Masatomo Matsushima, Mayumi Ohmiya
DOI: 10.4236/apm.2013.31A029 4,000 Downloads 6,707 Views Citations
Pub. Date: January 30, 2013
N-Fold Darboux Transformation of the Jaulent-Miodek Equation
Guohua Xu
DOI: 10.4236/am.2014.517254 3,517 Downloads 3,933 Views Citations
Pub. Date: October 9, 2014
Darboux Transformation and New Multi-Soliton Solutions of the Whitham-Broer-Kaup System
Tiantian Xu
DOI: 10.4236/am.2015.61003 5,390 Downloads 5,994 Views Citations
Pub. Date: January 7, 2015