Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
R. M. Miura, “Korteweg—De Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation,” Journal of Mathematical Physics, Vol. 9, No. 8, 1968, pp. 1202-1204. doi:10.1063/1.1664700
has been cited by the following article:
TITLE: Semi-Commutative Differential Operators Associated with the Dirac Opetator and Darboux Transformation
AUTHORS: Masatomo Matsushima, Mayumi Ohmiya
KEYWORDS: KdV Polynomials; mKdV (-) Polynomials; Schrödinger Operator; Dirac Operator
JOURNAL NAME: Advances in Pure Mathematics, Vol.3 No.1A, January 30, 2013
ABSTRACT: In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are constructed. Using this results, the hierarchy of the mKdV (-) polynomials are expressed in terms of the KdV polynomials. These formulas give a new interpretation of the classical Darboux transformation and the Miura transformation. Moreover, the recursion operator associated with the hierarchy of the mKdV (-) polynomials is constructed by the algebraic method.
Related Articles:
The Pfaffian Technique: A (2 + 1)-Dimensional Korteweg de Vries Equation
Lixiao Zhai, Junxiao Zhao
DOI: 10.4236/jamp.2016.410195 1,160 Downloads 1,565 Views Citations
Pub. Date: October 27, 2016
Martingale Solution to Stochastic Extended Korteweg-de Vries Equation
Anna Karczewska, Maciej Szczeciński
DOI: 10.4236/apm.2018.812053 381 Downloads 639 Views Citations
Pub. Date: December 26, 2018
Travelling Solitary Wave Solutions to Higher Order Korteweg-de Vries Equation
Chunhuan Xiang, Honglei Wang
DOI: 10.4236/ojapps.2019.95029 551 Downloads 1,058 Views Citations
Pub. Date: May 23, 2019
Analytical and Numerical Computations of Multi-Solitons in the Korteweg-de Vries (KdV) Equation
Hycienth O. Orapine, Emem Ayankop-Andi, Godwin J. Ibeh
DOI: 10.4236/am.2020.117037 269 Downloads 639 Views Citations
Pub. Date: July 9, 2020
Interaction of Two Pulsatory Waves of the Korteweg-de Vries Equation in a Zigzag Hyperbolic Structure
Victor A. Miroshnikov
DOI: 10.4236/ajcm.2014.43022 5,513 Downloads 6,407 Views Citations
Pub. Date: June 24, 2014