Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Kroger, A., Biel, S., Simon, J., Gross, R., Unden, G. and Lancaster, C.R. (2002) Fumarate respiration of Wolinella succinogenes: Enzymology, energetics and coupling mechanism. Biochimica et Biophysica Acta, 1553, 23-38.

has been cited by the following article:

  • TITLE: Influence of thiol stress on oxidative phosphorylation and generation of ROS in Streptomyces coelicolor

    AUTHORS: Hemendra J. Vekaria, Ratna Prabha Chivukula

    KEYWORDS: Streptomyces coelicolor; DTT; Oxidative Phosphorylation; CatalaseA; ROS

    JOURNAL NAME: Journal of Biophysical Chemistry, Vol.1 No.3, November 29, 2010

    ABSTRACT: Thiols play very important role in the intracellular redox homeostasis. Imbalance in the redox status leads to changes in the intracellular metabolism including respiration. Thiol stress, a reductive type of stress can also cause redox imbalance. When Gram-positive bacterium Strep- tomyces coelicolor was exposed to thiol stress, catalaseA was induced. Induction of catalaseA is the consequence of elevation of ROS (reactive oxygen species). The two major sources of reactive oxygen species are Fenton reaction and slippage of electrons from electron transport chain during respiration. Hence, the effect of thiol stress was checked on the rate of oxidative phosphorylation in S. coelicolor. We found correlation in the increase of oxidative phosphorylation rate and the generation of ROS, subsequently leading to induction of catalase. It was observed that thiol stress does not affect the functionality of the individual complexes of the ETC, but still there was an increase in the overall respiration, which may lead to generation of more ROS leading to induction of catalase.