SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Peitl, O., Zanotto, E.D. and Hench, L.L. (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 292, 115-126. doi:10.1016/S0022-3093(01)00822-5

has been cited by the following article:

  • TITLE: Economic route to sodium-containing silicate bioactive glass scaffold

    AUTHORS: Enobong R. Essien, Luqman A. Adams, Rafiu O. Shaibu, Idris A. Olasupo, Aderemi Oki

    KEYWORDS: Sand; Alkoxysilanes; Carbonated Hydroxyapatite; Simulated Body Fluid; Bone Regeneration

    JOURNAL NAME: Open Journal of Regenerative Medicine, Vol.1 No.3, December 28, 2012

    ABSTRACT: Tetraethyl orthosilicate (TEOS) and trimethyl orthosilicate (TMOS) alkoxysilanes are expensive common precursors for silicate based solgel derived bioactive glasses. Facile approa- ches involving low cost substitutes are a necessity for bioactive glass implants in bone regeneration therapy. Quaternary SiO2–Na2O–CaO– P2O5 bioactive glass was prepared by the solgel method from locally sourced sand as precursor. The monolith glass material obtained was subjected to immersion studies in simulated body fluid (SBF) for 21 days. The surface morphology and composition of the glass before and after immersion in SBF was studied using SEM-EDX, while pH analysis was used to monitor changes on the glass surface in SBF solution. FTIR was used to confirm apatite formation on the material. Results showed that the concentration of Ca, P and C increased on the surface of the glass sample as immersion time increased, which was attributed to the formation of carbonated hydroxyapatite (HCA). The material shows ability to bond to bone making it a promising scaffold material for bone repair.