SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


V. Nagy, J. M. Puhl and M. F. Desrosiers, “Advancements in Accuracy of the Alanine Dosimetry System. Part 2. The Influence of the Irradiation Temperature,” Radiation Physics and Chemistry, Vol. 57, No. 1, 2000, pp. 1-9. doi:10.1016/S0969-806X(99)00339-4

has been cited by the following article:

  • TITLE: Simple EPR/Alanine Dosimeter for Medical Application

    AUTHORS: Mohamed A. Morsy

    KEYWORDS: Alanine Dosimetry; Radiotherapy Dosimetry; Megavoltage Radiotherapy; Irradiation Doses

    JOURNAL NAME: Open Journal of Radiology, Vol.2 No.4, December 13, 2012

    ABSTRACT: Linac x-ray and direct gamma irradiation sources were used in this study to irradiate simple polycrystalline alanine- in-glass (AiG) dosimeters with low-doses, typical for medical therapy, and high-doses, typical for syringes’ sterilization processe, respectively. The generated “stable” alanine radicals were quantitatively investigated by electron paramagnetic resonance (EPR) spectroscopy in the presence of an external standard reference (Mn2+/MgO) to correct for spec- trometer sensitivity variation. The results indicated that the de-amination of L-alanine is the main reaction to form the “stable” radical and the AiG-dosimeter gives comparable sensitivity for both low and high radiation doses. Moreover, a linear EPR-radiation dose response is observed over a very wide range, from 0 to 50 kGy, which is contrary to what has been reported by Bruker BioSpin using alanine’s pellet. This linear response and the well-known doses’ cumulative characteristics of alanine are in favor of the use of this simple dosimeter in ample medical applications, particularly the conventional radiotherapy treatment per patient.