SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


D. Gvozdanovic, D. Simic, U. Vizek, M. Matijasevic, K. P. Valavanis and D. Huljenic, “Petri Net Based Modeling of Application Layer Traffic Characteristics,” In EUROCON’ 01, 2001, pp. 424-427.

has been cited by the following article:

  • TITLE: Performance Study of a Distributed Web Server: An Analytical Approach

    AUTHORS: Sarah Tasneem, Reda Ammar

    KEYWORDS: Web Server; CSM; Performance Modeling; Performance Analysis; Distributed Systems; Queueing Model

    JOURNAL NAME: Journal of Software Engineering and Applications, Vol.5 No.11, November 30, 2012

    ABSTRACT: With the rapid expansion of the Internet, Web servers have played a major role in accessing the enormous mass of Web pages to find the information needed by the user. Despite the exponential growth of the WWW, a very negligible amount of research has been conducted in Web server performance analysis with a view to improve the time a Web server takes to connect, receive, and analyze a request sent by the client and then sending the answer back to client. In this paper, we propose a multi-layer analytical approach to study the web server performance. A simple client-server model is used to represent the WWW server in order to demonstrate how to apply the proposed approach. We developed a systematic, analytical methodology to quantify the communication delay and queuing overhead in a distributed web server system. The approach uses the Computation Structure Model to derive server processing time required to process a request sent from a client and queueing model to analyze the communication between the clients and the server.